Abstract:
The wireless communication method used for transmitting interfering resource allocation information (IRAI) comprises a step of transmitting the IRAI through L1 signaling from the serving eNB to the victim UE, wherein the IRAI indicates only interfering resource block (RB) allocation within the bandwidth of RBs allocated to the victim UE at least in the case that the resource allocation type of the interfering UE is type 0, type 1, or type 2-L. The resource allocation type of the interfering UE can be signaled from the serving eNB to the victim UE within the downlink control information (DCI) of the victim UE for allocating resource. The indication mode of the IRAI for at least one interfering UE among the multiple interfering UEs that belong to a same interfering cell can be dependent on those interfering UEs whose IRAI has been indicated among the multiple interfering UEs.
Abstract:
The present disclosure provides a wireless communication method, a transmission/reception point, a user equipment and a wireless communication system, the wireless communication method comprising a step of: receiving the UL/DL configuration for the UE in a common search space of a specific time/frequency resource associated with a specific TP/RP, wherein, the UE is attached to the specific TP/RP, and the association between a number index of the specific TP/RP and an index of the specific time/frequency resource is predefined.
Abstract:
Where first and second reference signals for a first and second communication system, respectively, are transmitted, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS for LTE-A, last half symbols in a time direction of a resource unit RB/Sub-frame defined in a frequency-time domain are used, and the CSI-RS is allocated in a position up to the last two symbols or in the last symbol, or the like, of a particular RB/Sub-frame and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in the last half symbol of RB/Sub-frame based on CSI-RS allocation information, measures channel quality by using this CSI-RS, and transmits and reports feedback information.
Abstract:
Provided are a communication apparatus and a method for receiving a response signal transmitted from a terminal configured with one or more downlink component carriers. The communication apparatus includes a transmitting section and a receiving section. The transmitting section is configured to transmit, to the terminal, downlink assignment information indicating one or more resources for downlink data, each of the one or more resources being assigned to one of the one or more downlink component carrier(s), and configured to transmit the downlink data to the terminal. The receiving section is configured to receive one or more response signals for the downlink data, which are transmitted from the terminal. The terminal makes the phase points of the response signals different in accordance with a number of downlink data which has been successively received.
Abstract:
In a MIMO system using a cross-polarized antenna structure, even if no ideal XPD can be obtained, the interference between different polarized waves can be reduced to allow an effective precoding to be executed. When a MIMO communication is performed between a transmitter and a receiver each using a cross-polarized antenna structure, a channel estimating and precoding selection section of the receiver performs a channel estimation of MIMO channels from the transmitter to the receiver, decides a precoding matrix of a projection matrix for mutually orthogonalizing or substantially orthogonalizing the channel response matrixes for respective different polarized waves, and feeds the determined precoding matrix back to the transmitter. In the transmitter, a precoding processing section applies the precoding matrix to the spatial stream corresponding to one of the polarized waves to perform a precoding, thereby allowing the transmitter to transmit the polarized waves with the orthogonality therebetween maintained.
Abstract:
Provided is a terminal that can accurately measure channel information between the terminal and each TP subjected to CoMP control. In this terminal, a reception processing unit (203) receives a reference signal transmitted from a specific transmission point and control information, and receives a signal transmitted from a transmission point other than the specific transmission point, this signal being received in resources comprising, from among a reference-signal resource group, a resource of a first number specified from the control information, and a resource of a second number separated from the first number by a predetermined number. A CSI generation unit (206) uses the reference signal and a signal received by an interference measurement resource to generate channel information. A transmission signal-forming unit (208) transmits the generated channel information.
Abstract:
A base station is disclosed, which is capable of appropriately configuring the timings of data assignment, data transmission and reception, and feedback for a case where the DL and UL sTTI lengths are different from each other. In this base station (100), a transmission section (106) transmits a downlink signal using a first short transmission time interval (sTTI) shortened in length than a TTI and used for downlink; and a reception section (107) receives an uplink signal using a second sTTI shortened in length than the TTI and used for uplink. When the first sTTI is shorter in length than the second sTTI, the reception section (107) receives the uplink signal in the second sTTI positioned after a predetermined interval from the transmission timing of the downlink signal, the predetermined interval being configured based on the length of the first sTTI.
Abstract:
A repeater generates repetition signals by repeating uplink signals over a plurality of subframes; controller sets a timing for transmitting the repetition signals, based on information indicating a transmission candidate subframe for a sounding reference signal used for measuring an uplink reception quality; and a transmitter transmits the repetition signals at the set timing.
Abstract:
An integrated circuit includes reception circuitry and demodulation circuitry. The reception circuitry, in operation, controls receiving one or more repetitions of control information in a search space region. The search space region includes a first plurality of sub-regions of different lengths for a largest repetition number of the control information. The search space region includes a second plurality of sub-regions of different lengths for a second-largest repetition number of the control information. An interval of subframes to which the first plurality of sub-regions are mapped is greater than an interval of subframes to which the second plurality of sub-regions are mapped. The demodulation circuitry, in operation, controls performing a demodulation process of the one or more repetitions of the control information.
Abstract:
Provided are a resource scheduling method, a resource determining method, an eNB, and a user equipment. The resource scheduling method for wireless communication is performed by the eNB. The wireless communication involves at least a first carrier and a second carrier. The resource scheduling method includes: transmitting a DCI in the first carrier to a UE to schedule downlink resources for a PDSCH of the second carrier, wherein the eNB is able to start transmitting a burst in the second carrier at a flexible time independent of the subframe boundaries of the second carrier after the second carrier is occupied by the eNB, and the DCI for a flexible PDSCH of the burst different from the normal PDSCH of the second carrier contains information on the time period scheduled for the flexible PDSCH. The flexible PDSCH and its corresponding RS can reuse the DwPTS subframe structure for minimal specification impact.