摘要:
An apparatus of a first high-efficiency (HE) access point (AP) or station for spatial reuse is the disclosed. The apparatus includes processing circuitry configured to: decode a first portion of a first packet; and if the first portion indicates the first packet was transmitted by a second HE AP or station and that the first packet is an overlapping basic service set (OBSS) packet, then if a preamble detect energy is below a threshold, cause to be transmitted a second packet simultaneously with a portion of the first packet after the first portion. The processing circuitry may be configured to determine the first portion was transmitted by the second HE AP or station if a field in a physical (PRY) header or a second field in a media access control (MAC) header indicate the first packet was transmitted by the second HE AP or station.
摘要:
An apparatus, computer readable medium, and method for overlapping basic service set (OBSS) indication in a high-efficiency wireless local-area network (HEW). An apparatus of a high-efficiency wireless local-area network device is disclosed. The apparatus including transceiver circuitry and processing circuitry configured to receive a frame and determine whether the frame is a frame transmitted from a basic service set (BSS) or a frame transmitted from an OBSS based on one or more media access control (MAC) addresses of the frame. The MAC address may include an indication of a BSS of the HE wireless device. If the HE wireless device is an access point, then a second part of the MAC address may be a predetermined pattern, the second part of the MAC address may be a formula applied to a first part of the MAC address, or an individual/group bit of the MAC address may be set.
摘要:
Methods, computer readable media, and wireless apparatuses are disclosed. The apparatus comprising a memory and processing circuitry coupled to the memory. The processing circuitry is configured to: associate with a master station, decode a trigger frame or a multi-user request-to-send (MU-RTS) frame from the master station, where the trigger frame or the MU-RTS frame comprises a first duration and a transmitter address, and respond to the trigger frame or the MU-RTS frame if a network allocation vector (NAV) is not set, or if the NAV is set and a saved transmission opportunity (TXOP) holder address for the NAV is the same as the transmitter address of the MU-RTS or trigger frame and the trigger frame or MU-RTS indicates the station is to respond.
摘要:
Apparatuses, methods, and computer readable media for signaling clear-channel assessment parameters in a high-efficiency wireless local area network (HEW) are disclosed. A HEW master station comprising circuitry is disclosed. The circuitry may be configured to determine one or more clear-channel assessment (CCA) parameters for one or more HEW stations, and transmit a CCA parameter of the one or more CCA parameters to the corresponding HEW station of the one or more HEW stations. The clear-channel assessment parameter may be one from the following group: mid-packet detect (MPD) threshold, energy detect threshold, and signal detect threshold. The HEW master station may determine the CCA parameter based on the at least one of the following group: an uplink signal strength of the HEW device, a signal quality report received from the HEW device, and a downlink signal strength of the master station received by the HEW device.
摘要:
Embodiments of a high-efficiency Wi-Fi (HEW) station, access point (AP), and method for random access contention in a wireless network are generally described herein. In some embodiments, the HEW station may receive a beacon frame that indicates a number of trigger frames (TFs) included in a beacon interval. The beacon frame may be received from an HEW access point (AP) in channel resources that include multiple sub-channels. The HEW station may receive a random access TF that indicates a random access portion of the sub-channels that are allocated for random access contention during an uplink transmission period. The HEW station may select a candidate sub-channel from the channel resources. When the candidate sub-channel is included in the random access portion, the HEW station may transmit an association request (AR) frame on the candidate sub-channel during the uplink transmission period.
摘要:
Wireless device, method, and computer readable media for channel contention in wireless communication devices. The wireless communication device may include hardware processing circuitry configured to: determine to adapt the channel contention, and configured to adapt the channel contention settings by changing a level of a clear channel assessment (CCA) and adapting at least one additional channel contention setting. The hardware processing circuitry may be configured to adapt the channel contention settings by raising a level of the clear channel assessment (CCA) and by decreasing a power used to transmit, raising a back-off time, or modifying a portion of or parameter to a distributed coordination function (DCF). The hardware processing circuitry may be configured to adapt the channel contention settings by decreasing the clear channel assessment (CCA) and increasing a power used to transmit or decreasing an amount of time to wait after a CCA determines the channel is free.
摘要:
A transmitter/receiver pair may estimate a first channel interference caused during the spatial reuse phase by the transmitter/receiver pair to other transmitter/receiver pairs over a channel. A second channel interference experienced by the transmitter/receiver pair may be estimated during the spatial reuse phase by the transmitter/receiver pair from the other transmitter/receiver pairs. An interference margin may be estimated for the channel based on the first and second channel interferences. The interference margin may be announced to the other transmitter/receiver pairs in frame. The interference margin may then be complied with while communicating over the channel in order to control the interference.
摘要:
Logic to manage synch frame transmissions in a synch network via helper stations (STAs) synched to the network. Logic may coordinate actions of helper STAs via a transmission window (TW) provided by a master clock STA. Logic may distribute synch frame transmissions within a TW via synch logic in the helper STAs. Logic in helper STAs of a synch network may determine discovery periods in which to transmit synch frames between synch frame transmissions by the master clock STA. Logic in helper STAs to determine a discovery period in which to transmit synch frames to share workload with the master clock STA and to extend the coverage area of the synch network. Logic of the master clock STA may establish a fixed TW based upon the number of helper STAs and a time constraint for discovering the synch network. Or logic of the master clock STA may establish a dynamic TW in which the master clock STA can adjust the TW based upon a number of synch frame transmissions during a TW.
摘要:
Examples are disclosed for multi-level service discovery. In some examples, a first level of information indicating a service type for a service provided by a first wireless device may be transmitted by the first wireless device to another wireless device. The first level may enable the other wireless device to determine whether the indicated service type at least partially matches a service interest. A second level may then be transmitted by the first wireless device that includes a service identification to enable the other wireless device to determine whether the service substantially matches a service interest for the other wireless device. A third level may then be transmitted from the first wireless device that includes service content information. The third level may be transmitted responsive to the other wireless device requesting the service content information. Other examples are described and claimed.
摘要:
For example, a wireless communication station (STA) may be configured to set a Message Integrity Code (MIC) in a MIC field to protect contents of a control frame according to a Galois Message Authentication Code with 256-bit cipher-key (GMAC-256) protection mechanism. For example, the MIC may be based on a Packet Number (PN). For example, a size of the MIC field may be less than 16 bytes. For example, the STA may be configured to set a PN field based on the PN. For example, a size of the PN field may be less than 6 bytes. For example, the STA may be configured to transmit the control frame including the MIC field and the PN field.