Abstract:
Superabrasive tools and methods for the making thereof are disclosed and described. In one aspect, superabrasive particles are chemically bonded to a matrix support material according to a predetermined pattern by a braze alloy. The brazing alloy may be provided as a powder, thin sheet, or sheet of amorphous alloy. A template having a plurality of apertures arranged in a predetermined pattern may be used to place the superabrasive particles on a given substrate or matrix support material.
Abstract:
An improved high pressure apparatus can include a plurality of complementary die segments. The die segments can have inner surfaces which are shaped to form a die chamber upon assembly of the die segments. A pair of anvils can be oriented such that an anvil is at each end of the die chamber. To prevent the die segments from being forced apart during movement of the anvils, force members can be connected to the die segments. The force members can apply discrete forces to the die segments sufficient to retain the die segments in substantially fixed positions relative to each other during application of force by the pair of anvils. Using such a high pressure apparatus can achieve pressures as high as 10 GPa with improved useful die life and larger reaction volumes.
Abstract:
A cubic boron nitride cluster comprises a core (10) and an overgrown region, the overgrown region containing a plurality of cubic boron nitride crystallites (12) extending outwards from the core (10). The majority of the cubic boron nitride crystallites (12) have a cross-sectional area which increases as the distance from the core (10) increases. A method of producing cubic boron nitride clusters is also provided.
Abstract:
A method of producing a plurality of discrete ultra-hard abrasive particles includes the steps of providing a plurality of granules, each comprising at least one ultra-hard abrasive particle, a precursor for the abrasive particle and a solvent/catalyst for the abrasive particle or precursor of such a solvent/catalyst, placing the granules with a separating medium between adjacent granules in the reaction zone of a high pressure/high temperature apparatus, subjecting the contents of the reaction zone to elevated temperature and pressure conditions at which the ultra-hard abrasive particle is crystallographically stable, recovering thus treated material from the reaction zone and removing the separating medium in the treated material to produce a plurality of discrete abrasive particles.
Abstract:
An improved high pressure apparatus can include a plurality of complementary die segments. The die segments can have inner surfaces which are shaped to form a die chamber upon assembly of the die segments. A pair of anvils can be oriented such that an anvil is at each end of the die chamber. To prevent the die segments from being forced apart during movement of the anvils, force members can be connected to the die segments. The force members can apply discrete forces to the die segments sufficient to retain the die segments in substantially fixed positions relative to each other during application of force by the pair of anvils. Using such a high pressure apparatus can achieve pressures as high as 10 GPa with improved useful die life and larger reaction volumes.
Abstract:
High pressure synthesis of various crystals such as diamond, cBN and the like can be carried out using reaction assemblies suitable for use in methods such as temperature gradient methods. The reaction assembly can be oriented substantially perpendicular to gravity during application of high pressure. Orienting the reaction assembly in this manner can avoid detrimental effects of gravity on the molten catalyst, e.g., convection, hence increasing available volumes for growing high quality crystals. Multiple reaction assemblies can be oriented in series or parallel, each reaction assembly having one or more growth cells suitable for growth of high quality crystals. Additionally, various high pressure apparatuses can be used. A split die design allows for particularly effective results and control of temperature and growth conditions for individual crystals.
Abstract:
The invention provides a mass of crystals, particularly diamond crystals, having a size of less than 100 microns and in which mass the majority of the crystals are faceted single crystals. The invention further provides a method of producing such a mass of crystals which utilizes crystal growth under elevated temperature and pressure conditions, the supersaturation driving force necessary for crystal growth being dependent, at least in part, on the difference in surface free energy between low Miller index surfaces and high Miller index surfaces of the crystals. Preferably, the method is carried out under conditions where the Wulff effect dominates.
Abstract:
The invention is intended to establish means for manufacturing MB2 single crystals and to provide a useful superconductive material (wire rod and so forth) taking advantage of anisotropic superconductive properties thereof. A mixed raw material of Mg and B or a precursor containing MgB2 crystallites, obtained by causing reaction of the mixed raw material of Mg and B, kept in contact with hexagonal boron nitride (hBN), is held at a high temperature in the range of 1300 to 1700° C. and under a high pressure in the range of 3 to 6 GPa to cause reaction for forming an intermediate product, thereby growing the MB2 single crystals having anisotropic superconductive properties via the intermediate product. The single crystals have features such that, depending on a direction in which a magnetic field is applied thereto, an irreversible magnetic field strength becomes equivalent to not less than 95% of a second magnetic field strength, so that adjustment of crystal orientation thereof results in production of a superconductive material excellent in property. Further, it is useful in effecting growth of the single crystals to cause a reducing agent such as Mg and so forth to coexist at the time of the reaction, or to provide a temperature gradient in melt occurring in the course of the reaction.
Abstract:
A method of producing a plurality of discrete ultra-hard abrasive particles includes the steps of providing a plurality of granules, each comprising at least one ultra-hard abrasive particle, a precursor for the abrasive particle and a solvent/catalyst for the abrasive particle or precursor of such a solvent/catalyst, placing the granules with a separating medium between adjacent granules in the reaction zone of a high pressure/high temperature apparatus, subjecting the contents of the reaction zone to elevated temperature and pressure conditions at which the ultra-hard abrasive particle is crystallographically stable, recovering thus treated material from the reaction zone and removing the separating medium in the treated material to produce a plurality of discrete abrasive particles.
Abstract:
The invention is intended to establish means for manufacturing MB2 single crystals and to provide a useful superconductive material (wire rod and so forth) taking advantage of anisotropic superconductive properties thereof. A mixed raw material of Mg and B or a precursor containing MgB2 crystallites, obtained by causing reaction of the mixed raw material of Mg and B, kept in contact with hexagonal boron nitride (hBN), is held at a high temperature in the range of 1300 to 1700null C. and under a high pressure in the range of 3 to 6 GPa to cause reaction for forming an intermediate product, thereby growing the MB2 single crystals having anisotropic superconductive properties via the intermediate product. The single crystals have features such that, depending on a direction in which a magnetic field is applied thereto, an irreversible magnetic field strength becomes equivalent to not less than 95% of a second magnetic field strength, so that adjustment of crystal orientation thereof results in production of a superconductive material excellent in property. Further, it is useful in effecting growth of the single crystals to cause a reducing agent such as Mg and so forth to coexist at the time of the reaction, or to provide a temperature gradient in melt occurring in the course of the reaction.