Abstract:
A method of heterogeneous reaction is described, comprising reacting a water-soluble component and an oil-soluble component dispersed in the water-soluble component or an aqueous medium containing the same. This dispersion is attained by passing the oil-soluble component through the micropores of a hydrophilic material as it is introduced into the aqueous medium. This hydrophilic material can be shaped into a desired form such as a membrane and a fabric. The flow rate, reaction rate and conversion are easy to control in the present method since the particle size of the oil-soluble component can be appropriately controlled. Furthermore, the present method does not need any stirring power nor an emulsification operation, and thus is advantageous from an economic standpoint.
Abstract:
A method for the bubble-free feed of gaseous reactants of a chemical and/or biological reaction into a liquid reaction medium, characterized by filling the pores of a porous polymer membrane with the reaction medium, providing one side of the porous polymer membrane with the gaseous reactants, and immersing the other side of the porous polymer membrane into the liquid reaction medium. The pressure of the gaseous reactants should lie below the bubble pressure determined for the reaction medium, but be at least so great that the liquid reaction medium does not pass through the porous polymer membrane to the gas side. Preferred parameters include relative pore volume between 50 and 90%; maximal pore diameter between 0.2 and 3 .mu.m; and disposing the porous polymer membrane in the form of a flat membrane, tube or hollow filaments.
Abstract:
Disclosed is a method of carrying out a mobile atom insertion reaction, such as a hydrogen insertion reaction, for the synthesis of reduced, hydrogenated compounds. Such reactions include the production of ammonia and hydrazine from nitrogen, formic acid and methanol from carbon dioxide, and hydrogen peroxide from oxygen. The insertion reactions are carried out at a bipolar mobile atom transmissive membrane comprising a membrane formed of a mobile atom pump material, as a hydrogen pump material, conductive atom transmissive means on one surface of the membrane and conductive atom transmissive means on the opposite surface of the membrane. The mobile atom, such as hydrogen, diffuses across the membrane, to provide a source of hydrogen on the insertion reaction side of the membrane. The insertion reaction side of the membrane is positively biased with respect to a counterelectrode so that a reactant molecule, such as carbon dioxide, is electrosorbed on that surface of the membrane. The electrosorbed reactant molecule chemically reacts with the surface hydrogen by the insertion reaction to form a reduced, hydrogenated product such as formic acid. Also disclosed is a chemical reactor, containing the membrane, and several electric field assisted chemical reactions utilizing the membrane and reactor.
Abstract:
An osmotically driven fluid dispenser for use in an aqueous environment comprising: a shape retaining canister having controlled permeability to water; an osmotically effective solute confined in the canister which, in solution, exhibits an osmotic pressure gradient against the water in the environment; an outlet in the canister wall; and a flexible bag of relatively impervious material that holds the fluid to be dispensed and is housed in the canister with its open end in sealed contact with the canister such that the canister outlet communicates with the bag interior and the bag interior is closed to the solute and aqueous solution thereof with the remainder of the bag spaced from and generally unsupported by the canister wall.
Abstract:
According to the proposed process for preparing oxygenated cocktail, dispersed oxygen is continuously introduced into a continuously supplied thin (not in excess of 5 mm) layer of a foam-forming food liquid over the entire volume of said liquid. The disclosed apparatus for effecting said process comprises a vessel with a porous member arranged therein, which divides said vessel into two sealed off portions. The lower portion permanently communicates via a branch pipe with a forced oxygen supply source, whereas the upper portion serves as a container for the foam-forming liquid for preparing oxygenated cocktail and has a pipe for the supply of said food foam-forming liquid and a pipe for discharging prepared cocktail. The foam-forming food liquid may be fruit juice, kvass, beer, whey, buttermilk, herb infusion and other biologically adequate liquid products.
Abstract:
An osmotic dispenser is described which is capable of releasing to its outside environment concentrations of active agent at an osmotically controlled rate over a prolonged period of time, and the active agent formulation of which is a solid or semisolid at storage temperatures, advantageously room temperature, and is fluid at the temperature of the prospective situs for the osmotic dispenser, typically at body temperature.
Abstract:
An osmotic dispenser is comprised of (1) a water porous housing member confining (2) a first flexible bag of relatively impervious material containing an active agent and provided with active agent dispensing head, and (3) a second bag of controlled permeability to moisture containing a solution which exhibits an osmotic pressure gradient against water. The first and second bags are disposed within the housing member such that water permeates from the external environment through the housing and migrates by osmosis into the solution contained in the second bag which increases in volume thereby generating mechanical force on the first bag, which mechanical force in turn ejects the active agent out of the apparatus.
Abstract:
An apparatus for dispersing gas in liquid mediums comprising a rigid adapter, a rigid tubular inner member secured to the adapter cooperating with a passage in said adapter to form a continuous conduit for gas, a terminal member for said rigid tubular inner member, a flexible, collapsible porous sleeve, having one permanently closed end and a peripheral dimension approximately equal to the peripheral dimension of a cross section of said tubular member, enclosing said tubular member and said terminal member and secured to the adapter to form an air chamber between the tubular member and the sleeve, said terminal member having means for passage of gas between the interior of the tubular member and the closed end of said sleeve and separate communication means connecting the closed end of said sleeve and the longitudinally extending space between the sleeve and said tubular member.