Abstract:
A residual stress measuring method capable of measuring residual stress of the surface of an object to be inspected rapidly in a non-destructive non-contact manner, as well as a residual stress measuring system having such characteristics and being high in portability, are provided. The residual stress measuring system comprises a heating laser for heating an inspection area of an object to be inspected, a laser interferometer for irradiating the inspection area interferometric with laser light and measuring a deformation quantity within an elastic deformation range upon stress relief by heating in accordance with a laser interferometric method, and a data processor for measuring residual stress from the deformation quantity within the elastic deformation range upon stress relief of the object to be inspected.
Abstract:
A method and apparatus for measuring the physical properties of a micro region measures the two-dimensional distribution of stress/strain in real time at high resolution and sensitivity and with a high level of measuring position matching. A sample is scanned and irradiated with a finely focused electron beam (23, 26), and the displacement of position of a diffraction spot (32, 33) is measured by a two-dimensional position-sensitive electron detector (13). The displacement amount is outputted as a voltage value that is then converted into the magnitude of the stress/strain according to the principle of a nano diffraction method, and the magnitude is displayed in synchronism with a sample position signal.
Abstract:
The present invention provides a simple design for a temperature-insensitive extrinsic polarimetric strain sensor. The sensing element is a thin sheet of photoelastic material that is bonded to the test object. It is illuminated with linearly polarized light with the polarization direction at 45 degrees relative to the strain-induced fast and slow axes in the photoelastic material. The sensor measures the difference between the strains along these two orthogonal directions. The reduced sensitivity of the sensor to temperature results from the fact that the illumination is perpendicular to the surface of the test object. All polarization components that are parallel to the surface will experience identical refractive index changes due to thermal effects. Consequently, a measurement of the difference in strains along two directions in the surface plane is insensitive to temperature.
Abstract:
Absolute strain is measured by providing a coherent beam of light and separating the coherent beam of light into first and second beams which are in quadrature with one another and which have different polarization angles. The first and second beams are combined in a manner which maintains the different polarization angles thereof, so as to form a combined beam. The combined beam is then applied to a Fabry-Perot strain sensor so as to form a reflected combined beam. The reflected combined beam is then separated into first and second reflected beams having different polarization angles. The intensity of the first and second reflected beams is then sensed, so as to determine a change in the etalon length of the Fabry-Perot sensor. The change in etalon length is indicative of the absolute strain sensed.
Abstract:
Cascaded waveguide sensors with different sensitivities to temperature and strain produce independent temperature and strain measurements. In one embodiment a first sensor is formed of a first optical material having a corresponding first sensible thermomechanical response and a second sensor is formed of a second optical material having a corresponding second sensible thermomechanical response. The first and second thermomechanical responses are sufficiently different so as to produce independent temperature and strain measurements. Particular embodiments employ intrinsic or extrinsic Fabry-Perot interferometers (IFP, EFP),sensors, in-line fiber etalon (ILFE) sensor and a fiber-optic Bragg grating.
Abstract:
A real-time imaging contact gauge for indicating the distribution of contact pressure over a surface includes a transparent base panel, a pressure-transmitting member at one face of the transparent base panel for receiving the contact pressure to be indicated, a birefringent member sensitive to mechanical pressure located between the pressure-transmitting member and the transparent base panel, a plurality of spaced, parallel electro-luminescent layers carried by the transparent base panel for illuminating the birefringent layer, and a polarizer for polarizing the light transmitted to the birefringent layer to produce optical interference patterns corresponding to the contact presssure distribution applied to the pressure-transmitting member, which patterns are viewable through the opposite face of the transparent base panel.
Abstract:
A pressure sensor includes two birefringent media, one of which is exposedo pressure to undergo pressure-variable birefringence. Polarized light passes through the birefringent media to be modulated in accordance with the pressure and is then made incident on a photodetector to detect the modulation. The use of two birefringent media provides temperature compensation.
Abstract:
This invention discloses an optical and computation system that enables the magnitude of the retardation, or the birefringence, in a birefringent material to be measured. This is achieved by consideration of the spectral interference pattern generated by combining quadrature axes of polarized light that have passed through the material, however, unlike other approaches, this invention removes the spectral intensity variations of the light source and the spectral attenuation variations of the optical system before analyzing the resultant spectral interference pattern. Since the spectral interference pattern is unique for each retardation or birefringence value, this invention provides an absolute measure of these quantities. Additionally this invention permits the full range of retardations or equivalent birefringence values to be measured, from zero retardation to any (large) value that does not create interference modulations, the frequency of which exceed the Shannon-Kotelnikov criteria for the wavelength or spectral sampling implemented. Further, in the second main embodiment of this invention, the dependence on stored light source spectral intensities and stored optical light path attenuations is removed, with the system being independent of any time dependent variations in intensity and/or attenuations and additionally, being independent of any axial alignment or setup requirements.
Abstract:
A method of determining induced change of polarization state of light in a polarization element comprising transmitting unpolarized light from a light source at the one end of an optical transmitter waveguide means (21) to polarizer means (31) at the other end; polarizing the unpolarized light by the polarizer means (31); transmitting the polarized light through the polarization element (41, 41A, 41B) using at least one reflective optical element; analyzing the transmitted polarized light from the polarization element by an analyzer means (32); and transmitting the analyzed polarized light from the one end of optical receiver waveguide means (22) to a light detector at the other end; wherein the unpolarized light polarized by the polarizer means (31), the polarized light analyzed by the analyzer means (32), or both, are non-collimated; and the polarized light in the light path between the polarizer means (31) and the analyzer means (32) is collected and reflected by at least one reflective imaging optical element (51) so that the analyzed light exits the analyzer means (32) from the same side as the unpolarized light enters the polarizer (31). Further, fiber optic sensor devices for determining induced change of polarization state of light in a polarization element, particularly linear birefringence induced by electric voltage, electric field, and mechanical force, and circular birefringence induced by electric current and magnetic field.
Abstract:
The present invention is a method and an apparatus for the precise quantitative measurement of the magnitude of force exerted at the points of contact on a high density electrical interconnect that quantitatively determines the magnitude of the force. The invention includes the steps of establishing a pressing relationship between a photoelastic material and the high density interconnect, coupling plane-polarized light into the photoelastic material stressed as a result of the pressing relationship with the high density interconnect, coupling of the polarized light being at 45 degrees with the direction of pressing, capturing an image of the fringe pattern of the plane polarized light exiting the stressed photoelastic material, the fringe pattern comprising of fringes wherein the number of fringes varies with the magnitude of the pressing force, and counting the number of fringes produced to determine the magnitude of force exerted on the photoelastic member.