Abstract:
A robotic device may comprise an adaptive controller configured to learn to predict consequences of robotic device's actions. During training, the controller may receive a copy of the planned and/or executed motor command and sensory information obtained based on the robot's response to the command. The controller may predict sensory outcome based on the command and one or more prior sensory inputs. The predicted sensory outcome may be compared to the actual outcome. Based on a determination that the prediction matches the actual outcome, the training may stop. Upon detecting a discrepancy between the prediction and the actual outcome, the controller may provide a continuation signal configured to indicate that additional training may be utilized. In some classification implementations, the discrepancy signal may be used to indicate occurrence of novel (not yet learned) objects in the sensory input and/or indicate continuation of training to recognize said objects.
Abstract:
Robotic devices may be operated by users remotely. A learning controller apparatus may detect remote transmissions comprising user control instructions. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The learning apparatus may monitor one or more wavelength (infrared light, radio channel) and detect transmissions from user remote control device to the robot during its operation by the user. The learning apparatus may be configured to develop associations between the detected user remote control instructions and actions of the robot for given context. When a given sensory context occurs, the learning controller may automatically provide control instructions to the robot that may be associates with the given context. The provision of control instructions to the robot by the learning controller may obviate the need for user remote control of the robot thereby enabling autonomous operation by the robot.
Abstract:
A positioning system and method for determining a position of a machine on a worksite are disclosed. The method may store a map of the worksite which includes one or more known objects in the worksite. The method may determine whether a locating device associated with the machine is accurately providing the position of the machine. The method may also include detecting one or more objects in the worksite. The method may further determine an unmatched object from among the detected objects that does not match the one or more known objects stored in the map. The method may also store the unmatched object in the map as a known object of the worksite.
Abstract:
A self-propelled device is disclosed that includes a center of mass drive system. The self-propelled device includes a substantially cylindrical body and wheels, with each wheel having a diameter substantially equivalent to the body. The self-propelled device may further include an internal drive system with a center of mass below a rotational axis of the wheels. Operation and maneuvering of the self-propelled device may be performed via active displacement of the center of mass.
Abstract:
Provided is a method including receiving information on a surrounding situation detected by the mobile robot; detecting birds from the received surrounding situation information; allocating a birds control mission to the mobile robot by extracting a birds control pattern corresponding to the surrounding situation; and verifying a result in accordance with performing the allocated birds control mission from the mobile robot. By controlling the birds so as to, in advance, prevent a loss of lives and economical loss which may be caused when the birds collide with airplanes at the airport, it is possible to improve productivity and efficiency of a birds repelling job in an airport and provide construction of a new type of aviation maintenance business model by activating an air traffic control industry through providing a safer airplane operating model while saving operating personnel costs for preventing collision of birds.
Abstract:
Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
Abstract:
Provides is a method including receiving information on a surrounding situation detected by the mobile robot; detecting birds from the received surrounding situation information; allocating a birds control mission to the mobile robot by extracting a birds control pattern corresponding to the surrounding situation; and verifying a result in accordance with performing the allocated birds control mission from the mobile robot. By controlling the birds so as to, in advance, prevent a loss of lives and economical loss which may be caused when the birds collide with airplanes at the airport, it is possible to improve productivity and efficiency of a birds repelling job in an airport and provide construction of a new type of aviation maintenance business model by activating an air traffic control industry through providing a safer airplane operating model while saving operating personnel costs for preventing collision of birds.
Abstract:
An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.
Abstract:
Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
Abstract:
An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.