METHOD FOR PROTECTING REACTIVE MATERIALS WITH ATOMICALLY THIN FILM

    公开(公告)号:US20240242913A1

    公开(公告)日:2024-07-18

    申请号:US18559491

    申请日:2022-05-06

    CPC classification number: H01J1/34 H01J2201/3423 H01J2209/02

    Abstract: A method of forming a multi-layer structure comprising may include a step of providing a substrate, a step of depositing a protection layer, a step of depositing a thin film material, and a step of detaching. The substrate may have a low surface energy surface or a low surface energy coating or modification disposed on at least a portion of a substrate to form a low surface energy surface. The step of depositing a protection layer may be performed on at least a portion of the low surface energy surface. The step of detaching may detach the multi-layer structure from the substrate

    Electron-emitting element
    113.
    发明授权

    公开(公告)号:US11657997B2

    公开(公告)日:2023-05-23

    申请号:US17015561

    申请日:2020-09-09

    Abstract: According to one embodiment, an electron-emitting element includes a first member and a second member. The first member includes a semiconductor member of an n-type. The second member includes a diamond member a p-type and includes at least one selected from the group consisting of diamond and graphite. The semiconductor member includes at least one selected from the group consisting of a first material, a second material, and a third material. The first material includes nitrogen and at least one selected from the group consisting of B, Al, In, and Ga. The second material includes at least one selected from the group consisting of ZnO and ZnMgO. The third material includes at least one selected from the group consisting of BaTiO3, PbTiO3, Pb(Zrx, Ti1-x)O3, KNbO3, LiNbO3, LiTaO3, NaxWO3, Zn2O3, Ba2NaNb5O5, Pb2KNb5O15, and Li2B4O7.

    Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond
    114.
    发明授权
    Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond 有权
    基于超晶体金刚石的平面场发射体和高效光电阴极

    公开(公告)号:US09418814B2

    公开(公告)日:2016-08-16

    申请号:US14594949

    申请日:2015-01-12

    Abstract: A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 1012 to about 1014 emitting sites per cm2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

    Abstract translation: 形成场致发射体的方法包括在衬底上设置第一层。 第一层用纳米金刚石颗粒接种。 其上设置有第一层的衬底在包括氮气的气体混合物中保持在第一温度和第一压力。 将第一层暴露于微波等离子体以在第一层上形成氮掺杂的超微晶金刚石膜,其具有在约0.05原子%至约0.5原子%范围内的氮的百分比。 场发射体每平方厘米具有约1012至约1014个发射点。 也可以类似地通过在类似于场发射体的衬底上形成氮掺杂的超微晶金刚石膜,然后氢终止膜而形成光电阴极。 光电阴极对近紫外光以及可见光有反应。

    Photoelectric surface and photodetector
    116.
    发明申请
    Photoelectric surface and photodetector 有权
    光电表面和光电探测器

    公开(公告)号:US20070132050A1

    公开(公告)日:2007-06-14

    申请号:US11511497

    申请日:2006-08-29

    CPC classification number: H01L31/09 H01J2201/3423 H01L31/0304 Y02E10/544

    Abstract: Disclosed is a photoelectric surface including: a first group III nitride semiconductor layer that produces photoelectrons according to incidence of ultraviolet rays; and a second group III nitride semiconductor layer provided adjacent to the first group III nitride semiconductor layer and made of a thin-film crystal having c-axis orientation in a thickness direction, the second group III nitride semiconductor layer having an Al composition higher than that of the first group III nitride semiconductor layer.

    Abstract translation: 公开了一种光电表面,包括:根据紫外线的入射产生光电子的第一III族氮化物半导体层; 以及第二III族氮化物半导体层,其与第一III族氮化物半导体层相邻并且由在厚度方向上具有c轴取向的薄膜晶体构成,所述第二III族氮化物半导体层的Al组成高于 的第一III族氮化物半导体层。

    Semiconductor photocathode
    117.
    发明申请
    Semiconductor photocathode 有权
    半导体光电阴极

    公开(公告)号:US20040056279A1

    公开(公告)日:2004-03-25

    申请号:US10433060

    申请日:2003-11-17

    CPC classification number: H01J1/34 H01J2201/3423

    Abstract: In the case of a thick light-absorbing layer 2, a phenomenon of a decrease in the time resolution occurs. However, when the thickness of the light-absorbing layer 2 is limited, a portion of low electron concentration in one electron group is cut out, and hence overlap regions of adjacent electron concentration distributions decrease. Therefore, by shortening the transit time necessary for the passage of electrons, regions of overlapping electron distributions due to diffusion can also be suppressed. Furthermore, the strength of an electric field within a light-absorbing layer can be increased by thinning the light-absorbing layer. Therefore, the time resolution of infrared rays can be remarkably improved by a synergistic action of these effects. If it is assumed that the time resolution is 40 ps (picoseconds), for example, when the thickness of a light-absorbing layer is 1.3 nullm which is nearly equal to the wavelength of infrared, then a possible time resolution is 7.5 ps when this thickness is 0.19 nullm.

    Abstract translation: 在厚光吸收层2的情况下,会发生时间分辨率降低的现象。 然而,当光吸收层2的厚度受限时,一个电子组中的低电子浓度部分被切掉,因此相邻电子浓度分布的重叠区域减小。 因此,通过缩短电子通过所需的通行时间,也可以抑制由扩散引起的重叠电子分布的区域。 此外,可以通过使光吸收层变薄来增加光吸收层内的电场强度。 因此,通过这些效果的协同作用,可以显着提高红外线的时间分辨率。 如果假设时间分辨率为40ps(皮秒),例如,当光吸收层的厚度为1.3μm,几乎等于红外线的波长时,则当这样的时间分辨率为7.5ps时 厚度为0.19毫米。

    Short wavelength infrared cathode
    118.
    发明授权
    Short wavelength infrared cathode 有权
    短波长红外阴极

    公开(公告)号:US06633125B2

    公开(公告)日:2003-10-14

    申请号:US09871509

    申请日:2001-05-31

    CPC classification number: H01J31/50 H01J1/34 H01J2201/3423 H01J2231/50026

    Abstract: A cathode structure for an image intensifier tube operates to extend the spectral range of an image intensifier to the short wavelength infrared (SWIR) range of the electromagnetic spectrum, which is between 1.0 to 1.75 &mgr;m. The cathode structure utilizes a multi-layer structure consisting of a layer of GaSb disposed upon a layer of GaAs. The layers form a heterojunction therebetween where the GaSb material absorbs radiation and the GaAs is for emission characteristics. The doping profiles in each material are used to maximize the effects of band gap offsets of the heterojunction as well as provide a nearly flat conduction band profile for the cathode structure. The condition of nearly flat conduction band is enhanced by the use of blocking contacts at the emission surface of the cathode, where a bias is applied.

    Abstract translation: 用于图像增强管的阴极结构用于将图像增强器的光谱范围扩展到1.0至1.75μm之间的电磁光谱的短波长红外(SWIR)范围。 阴极结构使用由设置在GaAs层上的GaSb层组成的多层结构。 这些层在其间形成异质结,其中GaSb材料吸收辐射,并且GaAs用于发射特性。 每个材料中的掺杂分布用于最大化异质结的带隙偏移的影响,并且为阴极结构提供几乎平坦的导带分布。 通过在施加偏压的阴极的发射表面上使用阻挡接触来增强近乎平坦导带的条件。

    Photocathode
    119.
    发明授权
    Photocathode 有权
    光电阴极

    公开(公告)号:US06580215B2

    公开(公告)日:2003-06-17

    申请号:US09741826

    申请日:2000-12-22

    Inventor: Tokuaki Nihashi

    CPC classification number: H01J1/34 H01J43/08 H01J2201/3423 H01J2231/50021

    Abstract: A photocathode having a UV glass substrate and a laminate composed of a SiO2 layer, a GaAlN layer, a Group III-V nitride semiconductor layer and an AlN buffer layer provided on the UV glass substrate in succession. The UV glass substrate, which absorbs infrared rays, can be heat treated at a high speed by photoheating. Further, the UV glass substrate, which is transparent to ultraviolet rays, permits ultraviolet rays to be introduced into the Group III-V nitride semiconductor layer where photoelectric conversion occurs.

    Abstract translation: 具有UV玻璃基板和由UV玻璃基板上设置的SiO 2层,GaAlN层,III-V族氮化物半导体层和AlN缓冲层构成的层叠体的光电阴极。 吸收红外线的紫外线玻璃基板可以通过光热进行高速热处理。 此外,对紫外线透明的紫外线玻璃基板,能够在发生光电转换的III-V族氮化物半导体层中引入紫外线。

    High data rate smart sensor
    120.
    发明申请
    High data rate smart sensor 有权
    高数据率智能传感器

    公开(公告)号:US20030029989A1

    公开(公告)日:2003-02-13

    申请号:US10090017

    申请日:2002-02-22

    Abstract: A device for the high-speed analysis of photon- or particle-generated image data or for the high-speed energy-discrimination analysis of photon- or particle-counting data. A sensor collects the photons or particles on an array of solid state detectors, as electrical analog signals, and stores the analog-signal information on capacitors of readout arrays associated with the detector arrays. Image-related signals are transferred to integrated circuit chips containing an array of correction processor unit cells. Corrected signals are transferred to an analog image processor. Particle-counting data is transferred directly from the readout array chips to the analog image processor having circuitry for implementing an image processing or energy discrimination algorithm.

    Abstract translation: 用于高速分析光子或粒子产生的图像数据或用于光子或粒子计数数据的高速能量鉴别分析的装置。 传感器将固态检测器阵列上的光子或微粒收集为电气模拟信号,并将模拟信号信息存储在与检测器阵列相关联的读出阵列的电容上。 图像相关信号被传送到包含校正处理器单元单元阵列的集成电路芯片。 校正的信号被传送到模拟图像处理器。 粒子计数数据直接从读出阵列芯片传送到具有用于实现图像处理或能量鉴别算法的电路的模拟图像处理器。

Patent Agency Ranking