Abstract:
Message reliability is a key requirement of 5G/6G communications. In many challenging network environments, two successive retransmissions of a message can both be corrupted, greatly reducing reliability. Therefore, methods are disclosed for identifying faulted message elements according to a metric that includes the waveform or SNR of the message element, its modulation quality, and a consistency check between the received versions. The receiver can then assemble a merged message version by selecting the higher quality version of each message element from the two (or more) corrupted versions, and thereby avoid requesting yet another retransmission. In addition, the receiver can monitor the background level and, if it is above a predetermined limit, can request that the receiver store the message for a predetermined time, or until the background level subsides below the limit.
Abstract:
A classification apparatus includes a memory and a processor. The memory is configured to store rules corresponding to a corpus of rules in respective rule entries, each rule includes a respective set of unmasked bits having corresponding bit values, and at least some of the rules include masked bits. The rules in the corpus conform to respective Rule Patterns (RPs), each RP defining a respective sequence of masked and unmasked bits. The processor is configured to cluster the RPs, using a clustering criterion, into extended Rule Patterns (eRPs) associated with respective hash tables including buckets for storing rule entries. The clustering criterion aims to minimize an overall number of the eRPs while meeting a collision condition that depends on a specified maximal number of rule entries per bucket.
Abstract:
A method for delivering payloads through an interface includes receiving an out-of-sequence data transfer unit, DTU; segmenting the out-of-sequence DTU into at least one data unit; determining at least one priority level of the at least one data unit; and for any particular data unit among the at least one data unit, (1) selectively forwarding a payload of the particular data unit to the interface in response to priority level thereof satisfying a priority condition; or (2) holding the particular data unit in response to the priority level thereof not satisfying the priority condition.
Abstract:
An optical frame is received over an optical link within an optical network. The optical frame contains a payload of aggregated data, an alignment value, and a bit interleaved parity value. The content of the optical frame is aligned based on the alignment value. The bit interleaved parity value is monitored. In response to the monitoring, a transmission quality of the transmission link is determined.
Abstract:
A physiologic transmitter manages multiple communications between physiologic data acquisition devices attached to the patient and a receiver attached to an MRI or CT scanner. The transmitter's processor is able to generate waveform data and trigger data based upon the acquired physiologic data and transmit the data to a physiologic receiver attached to the host scanner. The receiver then is able to deliver a trigger signal to the host scanner for imaging the patient during a selected time frame based upon cardiac and/or respiratory cycles of the patient.
Abstract:
A system includes a transmitting line replaceable unit (TLRU) configured to receive messages including instructions for avionics receiving line replaceable units (RLRUs). The system further includes a memory configured to store validation data including a set of expected messages. A monitor is further included and is configured to monitor messages received at the TLRU and further configured to determine whether received messages are valid based on at least a portion of the set of expected messages stored in the memory. A plurality of RLRUs are further included and configured to receive message from the TLRU and to execute the instructions included in the received messages.
Abstract:
An optical frame is received over an optical link within an optical network. The optical frame contains a payload of aggregated data, an alignment value, and a bit interleaved parity value. The content of the optical frame is aligned based on the alignment value. The bit interleaved parity value is monitored. In response to the monitoring, a transmission quality of the transmission link is determined.
Abstract:
A node apparatus includes a receiving unit receiving a data frame from one of adjacent nodes apparatuses; a storing unit storing an identification information management table in which frame identification information with which the data frame may be uniquely identified, and overlapped data identification information; a processor which performs a process including: judging whether or not a final destination of the received data frame is the node apparatus itself; judging whether or not a registration that matches the frame identification information of the received data frame exists in the identification information management table; judging whether or not the overlapped data identification information of the received data frame and the overlapped data identification information corresponding to the registration match; and discarding the received data frame; and performing a retransmission of the received data frame to another adjacent node that has not been a transmission destination of the data frame.
Abstract:
Disclosed is a communication technology in which the effect of packet loss can be easily reduced to the extent that it can be ignored, even on networks where packet loss can easily occur. Specifically, a communication device is disclosed that includes a packet loss determination unit that determines whether a packet that transmits image information has been lost, and an interpolated packet transmission unit that transmits an interpolated packet when a packet that transmits image information has been lost.
Abstract:
A multimedia transceiver apparatus continuously generates a model of a video scene, and then uses the generated model to estimate missing sections (e.g., image frames) of the video stream by morphing and/or modifying available uncorrupted video data based on the model. By estimating the missing sections, the subjective quality of video under error conditions (e.g., image frame loss, image frame corruption, video signal interruption, etc.) is improved.