Abstract:
In packet communications between a mobile terminal and a base station, the mobile terminal checks a priority level of a traffic and judges a type of the traffic, and transmits a reservation signal for a transmission request to the base station when the type of the traffic is a high priority level or realtime type, and does not transmits it when the type of the traffic is a low priority level or non-realtime type, while the base station determines a resource amount to be reserved for packet transmission according to a resource utilization state and the reservation signal for the traffic of the high priority level or realtime type, or an average transmission interval or transmission rate for the traffic of the low priority level or non-realtime type according to margins in remaining resources, and notifies the resource amount or the average transmission interval or transmission rate to the mobile terminal.
Abstract:
Methods and apparatus for determining the quality of service of a network are disclosed. A disclosed methodology for determining quality of service for a network includes determining at least two metrics reflective of network parameters in at least two different protocol layers of the communication network. The metrics are then compared with respective threshold values, and quality of service for the network is determined based on the comparison of the metrics with the respective threshold values. Corresponding apparatus executing the methodology are also disclosed.
Abstract:
A conference control device includes: a communication processing unit which performs transmission/reception processing of conference information containing voice information and image information between the conference control device and a plurality of video conference terminal devices through a network; an information collecting unit which collects information on connection paths between the conference control device and the respective video conference terminal devices; a grouping unit which sorts the plurality of video conference terminal devices into a plurality of groups based on information on the connection paths collected by the information collecting unit; a band monitoring unit which monitors a use band of the communication processing unit in accordance with every group; and a bandwidth control unit which is, when the group having the use band of less than a predetermined value is detected by the band monitoring unit, controls the bandwidth of the video conference terminal devices belonging to the group.
Abstract:
A method and system based in part on a current network traffic determination and a predetermined acceptable Quality of Service parameter, the system sets a current state of available system services. In order to set the available system services, the apparatus refers to a database containing a listing of services for a given network. The database includes a hierarchy of the services correlated to the amount of bandwidth necessary to provide a given service. The determination is made by the apparatus, as to whether the amount bandwidth necessary to provide a particular type of service would degrade the QoS below an acceptable level if the service was provided on the network at the time of the determination. If degradation would occur, the service is made unavailable until the traffic level subsides to a point at which providing the service would not have an adverse affect on the QoS the network.
Abstract:
In general, a method includes monitoring, by a personal access point, an amount of backhaul bandwidth available for multimedia and signaling communications by measuring a level of latency associated with existing multimedia and signaling communications.
Abstract:
A packet-based communications system or network is configured into multiple geographically distinct network bandwidth zones having interzone communications links with a configured maximum bandwidth. Adaptive bandwidth management based upon quality of server (QoS) measurement between two zones is utilized to dynamically raise or lower the maximum allowable bandwidth limit for the link between the two zones. When QoS between two zones degrades, the allowable bandwidth for new calls between the two zones is lowered to a point that assists in increasing the QoS back to an acceptable level (i.e., by blocking new calls or rerouting them). In one embodiment, the QoS information takes the form of QoS alarms generated and transmitted by active IP phones in the network bandwidth zone.
Abstract:
In a bandwidth management system and method for guaranteeing quality of service (QoS) in a Voice over Internet protocol (VoIP) network, bandwidth use information used to establish or terminate a call is provided, a bandwidth is reset when the bandwidth use information is provided, and available bandwidth information which is changed according to the reset bandwidth is reported.
Abstract:
A call admission control system and method for Internet Protocol (IP) Differentiated Services (DiffServ) network having at least one node for interpreting signaling messages and controlling traffic load in the network. The method consists of an initialization (601) and a real-time phase (602). In initialization phase (601), coefficients of the approximating hyperplanes are computed (61) and stored (62). This phase is repeated when the descriptor of a traffic class changes (63), which usually happens when nodes are configured or reconfigured. A traffic mix is admissible (67), if for each real-time traffic class both the stability (65) and the delay (66) constraints are fulfilled. Stability is tested by evaluating the number of lost packets and comparing it to the tolerated packet loss ratio for each class in that queue. Delay constraint is tested by checking if the traffic mix is below at least one of the approximating hyperplanes in the space of number of sessions for each class.
Abstract:
A mechanism for a bidirectional reservation procedure within an in-band signaling mechanism gives symmetric real-time services running on mobile devices, which are used to support different access technologies in dynamic, mobile, wireless IP networks where the quality of the node connectivity can sometimes be unpredictably time-varying, the possibility to mutually reserve, monitor and adapt resources and service parameters for upstream and downstream direction along a communication path. The mechanism optimizes reservation mechanisms, especially for adaptive real-time services in wireless and wireless ad-hoc networks, by making use of a dynamic bidirectional reservation in-band signaling approach.
Abstract:
When an authorization and/or control element like a policy control network element is involved in the authorization and/or control of a service flow in a communication connection controlled, a network control element, such as a GGSN, controlling the communication connection determines a termination of the thus authorized and/or controlled service flow and informs the policy control network element about the termination thereof. The policy control network element may then remove service attributes and/or QoS attributes related to this service flow. Furthermore, the communication connection in the communication network can be modified on the basis of stored information which represents a state before the establishment of the service flow.