Device and method for measuring microwave surface resistance of dielectric conductor deposition interface

    公开(公告)号:US20230152360A1

    公开(公告)日:2023-05-18

    申请号:US18098704

    申请日:2023-01-19

    CPC classification number: G01R27/2688

    Abstract: A device for measuring a microwave surface resistance of a dielectric conductor deposition interface includes: a test platform, a calibration component, a sealing cavity and a support plate; wherein the test platform comprises: a shielding cavity having an open bottom, a dielectric rod, an input coupling structure, an output coupling structure, and a dielectric supporter; the dielectric conductor test sample and the test platform form a TE0m(n+δ) mode dielectric resonator; the calibration component and the dielectric conductor test sample are mounted on the test platform to measure corresponding quality factors, thereby calculating the microwave surface resistance of the deposition interface of the dielectric conductor test sample. The present invention requires no pre-measurement of relative permittivity and loss tangent of the dielectric conductor test sample. After calibration, the microwave surface resistance of the dielectric conductor deposition interface can be obtained by only one non-destructive measurement.

    MICROWAVE DIELECTRIC CERAMIC MATERIAL AND PREPARATION METHOD THEREOF

    公开(公告)号:US20230135062A1

    公开(公告)日:2023-05-04

    申请号:US17979079

    申请日:2022-11-02

    Abstract: A temperature-stable modified NiO—Ta2O5-based microwave dielectric ceramic material and a preparation method thereof are provided. Using ion doping modification to form solid solution structure is an important measure to adjust microwave dielectric properties, especially the temperature stability. Based on formation rules of the solid solution, ion replacement methods are designed including Ni2+ ions are replaced by Cu2+ ions, and (Ni1/3Ta2/3)4+ composite ions are replaced by [(Al1/2Nb1/2)ySn1-y]4+ composite ions, which considers that cations with similar ionic radii to Ni2+ and Ta5+ ions can be introduced into the NiTa2O6 ceramic for doping under the same coordination environment (coordination number=6), and therefore a ceramic material with the NiTa2O6 solid solution structure can be obtained. The microwave dielectric ceramic material with excellent temperature stability and low loss is finally prepared by adjusting molar contents of each of doped ions, and its microwave dielectric properties are excellent.

    THREE-DIMENSIONAL CARRIER STORED TRENCH IGBT AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20230090883A1

    公开(公告)日:2023-03-23

    申请号:US17752891

    申请日:2022-05-25

    Abstract: A three-dimensional carrier stored trench IGBT and a manufacturing method thereof are provided. A P-type buried layer and a split gate electrode with equal potential to an emitter metal is introduced on the basis of the traditional carrier stored trench IGBT, which can effectively eliminate the influence of an N-type carrier stored layer on breakdown characteristics of the device through the charge compensation, and at the same time can reduce the on-state voltage drop and improve the trade-off relationship between the on-state voltage drop Vceon and the turn-off loss Eoff. The split gate electrodes is introduced in the Z-axis direction, so that the gate electrodes are distributed at intervals. Therefore, the channel density is reduced. The turning on of the parasitic PMOS has a potential-clamping effect on the NMOS channel, so that the saturation current can be reduced and a wider short-circuit safe operating area (SCSOA) can be obtained.

    SPLIT GATE CSTBT WITH CURRENT CLAMPING PMOS AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20230088637A1

    公开(公告)日:2023-03-23

    申请号:US17752889

    申请日:2022-05-25

    Abstract: A split gate carrier stored trench bipolar transistor (CSTBT) with current clamping PMOS include a P-type buried layer and a split gate electrode with equal potential to an emitter metal on the basis of the traditional CSTBT, which effectively eliminates the influence of an N-type carrier stored layer on breakdown characteristics of the device through the charge compensation effect, and helps to improve the trade-off relationship between the on-state voltage drop and the turn-off loss. Moreover, the introduction of a parasitic PMOS structure can reduce the saturation current and improve short-circuit safe operating area of the device, reduce the Miller capacitance, and improve the switching speed of the device and reduce the switching loss of the device. In addition, the split gate CSTBT integrating the split gate electrode and gate electrode in the same trench can shorten the distance between PMOS and NMOS channels.

    REVERSE TIME MIGRATION IMAGING METHOD FOR CASED-HOLE STRUCTURE BASED ON ULTRASONIC PITCH-CATCH MEASUREMENT

    公开(公告)号:US20230033271A1

    公开(公告)日:2023-02-02

    申请号:US17962511

    申请日:2022-10-09

    Inventor: Hua WANG Meng LI

    Abstract: A reverse time migration imaging method for cased-hole based on ultrasonic pitch-catch measurement, including: calculating a theoretical dispersion curve; expanding original Lamb data of two receivers into array waveform data based on phase-shift interpolation; establishing a two-dimensional migration velocity model including density, P-wave velocity and S-wave velocity of a target area; generating and storing a forward propagating ultrasonic wavefield for each time step; reversing a time axis; generating and storing a reversely propagating ultrasonic Lamb wavefield for the two receivers after phase-shift interpolation; calculating envelopes of the forward propagating ultrasonic Lamb wavefield and the reversely propagating ultrasonic Lamb wavefield; applying a zero-lag cross-correlation imaging condition to obtain reverse time migration imaging results; and applying Laplace filtering to suppress low-frequency imaging noises in the imaging results.

    NOVEL SPECTRAL ANALYSIS METHOD BASED ON DIGITAL PULSE COMPRESSION AND CHIRP TRANSFORM

    公开(公告)号:US20220390495A1

    公开(公告)日:2022-12-08

    申请号:US17467328

    申请日:2021-09-06

    Abstract: The present invention is related to a signal spectrum analysis technology based on linear frequency modulation transformation (LFM) and fast digital pulse compression, which comprises two parts: a circuit for linear frequency modulation signal and an algorithm for fast digital pulse compression. Wherein, in the circuit the modulated chirp signals are obtained by the input signals mixing with the LO chirp signal and then filtered by the band-pass filter the intermediate frequency (IF) chirp signals are produced. The IF signals are composed of the chirp signals with the same frequency band and the chirp rate, but different initial times. Due to the IF chirp signals being orthogonal to each other, the spectrum of the input signals is extracted by the initial time and the orthogonal accumulation. The full spectrum of the input signal is obtained by changing the start position of the sampling data sets along the time axis. The present invention achieves fast high-resolution spectrum analysis by combining the circuit for linear frequency modulation signal and the algorithm for fast digital pulse compression.

Patent Agency Ranking