Abstract:
A synthetic resin tube structure including a first synthetic-resin member which includes a flange having a plurality of bores formed therein, and a plurality of first divided pipes formed integrally with the flange; and a second synthetic-resin member which includes a plurality of second divided pipes, and a connector to connect the plurality of second divided pipes to each other. In the synthetic resin tube structure, the plurality of first and second divided pipes are subjected to vibration welding to form a plurality of pipes respectively having therein passages which communicate with the respective corresponding bores, and the vibration welding is performed while a direction, in which the plurality of first and second divided pipes are vibrated, is inclined at an angle θ with respect to a reference plane in a direction perpendicular to an axial direction of each of the bores formed in the flange.
Abstract:
A multifunction fluid connector for an automotive vehicle power system includes a base component having at least one passage for conducting a fluid, with the passage ending in a bore which is closed by a multifunction fluid connector having three functional states in which the connector is either closed, or open to allow attachment of a hose or other conductor in fluid communication with the passage through the base component. In a final state, a fluid handling device such as a PCV valve, a MAP sensor, an EGR valve or other type of fluid handling component may be situated within the bore of the base component.
Abstract:
Disclosed herein is an actuator for regulating the flow of fluids in first and second flow paths of an internal combustion engine. The actuator includes a motor having a rotatable drive shaft, a gear assembly driven by the drive shaft of the motor, and first and second output shafts rotated in opposite directions by the gear assembly. The first and second output shafts are operatively linked to valves in the first and second flow paths, respectively, to regulate the flow of fluids in the first and second flow paths.
Abstract:
A system for controlling turbulence in a combustion engine having a composite upper intake manifold and a cylinder head. The system includes a composite housing, a composite cartridge, a shaft, a radial gasket, a lever arm, and a press in place gasket. The composite housing includes an open first end and an open second end. The open second end defines a first cross-sectional area. The first end is configured to be welded to the composite upper intake manifold and the second end has a gasket groove. The second end is configured to be connected with the cylinder head. The composite cartridge is positioned within and removably joined with the second end of the composite housing. The composite cartridge includes a body, a flap valve, and bushings. The shaft connected to the flap valve within the composite housing. The press in place gasket is positioned within the gasket groove.
Abstract:
A transparent component portion includes a first weld surface and a first taper locking surface formed opposite from the first weld surface. An absorbing component portion includes a second weld surface and a second taper locking surface formed opposite from the second weld surface. The first and second taper locking surfaces cooperate to force and lock the first and second weld surfaces into abutting engagement for laser welding.
Abstract:
An air intake device for an internal combustion engine formed of at least two plastic component parts assembled to form a combustion air flow channel. The plastic component parts have communicating weld surfaces lying radially outside the flow channel, along which the plastic component parts are joined to each other by friction welding, and at least two communicating weld surfaces with different radial distances from the flow channel are provided on both the first and the second plastic component parts.
Abstract:
A method of assembling a plastic article includes laser welding a first laser absorbent part having a first surface finish and a second laser transparent part with a second surface finish that is different than the first surface finish. The first part includes a surface finish that is textured and grained. The second part includes a substantially smooth non-textured surface finish. One of the first and second parts includes a carbon black dye that provides a desired black color. The other of the first and second parts does not include the black dye but instead utilizes another dark colored dye. The carbon black dye provides for the part to be laser absorbent and the other type of dye is utilized to provide a substantially similar appearance in a laser transparent part.
Abstract:
A method for making a lower intake manifold of an internal combustion engine includes the steps of (1) forming a main part from a plastic material by injection molding, (2) forming a runner insert for each engine cylinder from a plastic material by injection molding, and (3) individually attaching each runner insert to the main part to ensure the distance between two adjacent runner inserts is within a predetermined limit.
Abstract:
Laser welding of plastic involves a laser passing through laser translucent then laser absorbent material. A technical description as envisaged here is Laser Contour Welding. Universally, laser welding is done by Quasi simultaneous techniques and rarely by Contour techniques. Regular or symmetrical parts, under 5 inches are welded by Quasi simultaneous. Asymmetric and large parts are best welded by Contour Welding.Kinematics of robots permits a complex contour. Automotive plastic manifolds exceed 5 inches with asymmetry. The pairing of robot contour and laser welding facilitates a new Automotive manifold. It requires a new split line for laser access and manufacturing as described. Encompassing the above requirements and solutions can reduce the moldings for a V8 to 2 major operations.
Abstract:
An intake manifold for an internal combustion engine including a manifold base portion and a manifold cover portion. The manifold cover portion and base portion are each formed from a thermoplastic composite material. The base portion includes several runners which may be coupled to respective intake ports of an internal combustion head. The manifold base portion and the manifold cover portion may be selected from a group of differing parts to provide a manifold having desired application or performance characteristics.