Abstract:
Disclosed is an accumulator comprising a cylindrical shell including a cylindrical portion, a partitioning member for partitioning the interior of the shell into a hydraulic chamber and a gas chamber, and a port including a hydraulic fluid flow path for communicating the exterior of the shell and the hydraulic chamber. The variation of the pressure of a hydraulic fluid flowing into the hydraulic chamber is accommodated by expansion and compression of a gas in the gas chamber according to expansion and contraction of the partitioning member. The port is approximately airtightly inserted into the cylindrical portion of the shell, and is welded to an outer circumference of the cylindrical portion by means of welding.
Abstract:
A hydraulic fluid reservoir comprises a body defining a variable volume chamber having one end portion movable with the level of fluid in the chamber. A biasing member acting on a traction rod extending from the movable end portion restrains movement thereof under fluid pressure. The fluid pressure in the variable volume chamber advantageously counterbalances the force of reaction in the biasing member.
Abstract:
A malfunction detection device of a bellows type accumulator for pressurized fluid includes malfunction judgment unit for judging a malfunction of the bellows type accumulator on the basis of a detection output of the pressure sensor. The malfunction judgement unit judges that the malfunction of the seal member generates when the difference between a peak pressure value appeared before a predetermined time is past after the starting of the pressure increase from a value below a predetermined value in the inlet and outlet port and a stable fluid pressure appeared after the appearance of the peak pressure value is not within a predetermined range and/or when the peak pressure value does not appear before the progress of the predetermined time.
Abstract:
The present invention relates to a method of filling a pressure medium accumulator with a housing having an inner space that is subdivided into two chambers by a metallic pleated bellows used as a media-separating element, the first chamber thereof being filled with a gas and the second chamber being filled with a liquid pressure medium, and wherein a bottom valve is provided in a hydraulic port, its closing member being operable by the media-separating element, said valve permitting filling of the second chamber with fluid and preventing a complete evacuation of the second chamber. To enable reliable filling of the above-mentioned chambers with corresponding media without damaging the pleated bellows, the invention proposes a combination of the following process steps: a) evacuation of the second chamber b) filling of the second chamber with pressure medium, and c) filling the gas into the first chamber.
Abstract:
A hydraulic circuit includes an accumulator having an inflow passage which introduces a hydraulic fluid which is discharged from a hydraulic pump into a hydraulic fluid chamber and a discharge passage which discharges the hydraulic fluid from the hydraulic fluid chamber to a hydraulic actuator. The hydraulic circuit includes a valve mechanism which restricts the supply of hydraulic fluid from the hydraulic fluid chamber to the hydraulic actuator when the pressure in the hydraulic fluid chamber is less than a set pressure and which releases the restriction of the supply of hydraulic fluid to the hydraulic actuator when the pressure in the hydraulic fluid chamber is at least the set pressure. The valve mechanism may be installed inside the accumulator.
Abstract:
A storage chamber for a hydraulic vehicle brake system is embodied as a gas separator, with two fluid connections disposed at different heights. Wheel brake cylinders of an auxiliary force brake system are connected to the fluid connection located at a low level and can be actuated by muscle force if there is a malfunction of an external-energy service brake system. The gas separator keeps gas bubbles away from the fluid connection located at the low level and thereby prevents gas bubbles from getting into the brake fluid of the muscle force auxiliary brake system, in order to assure the function of that system.
Abstract:
A vehicle brake system has a gas pressure accumulator (10) comprising a housing (12), the interior of which is divided by metal bellows (16) into a gas-sensed gas chamber (20) and a fluid chamber (22). Via a feed line (24) a fluid may be supplied under pressure to and removed from the fluid chamber (22), wherein provided between the fluid chamber (22) and the feed line (24) is a valve arrangement (74), which closes when the pressure in the feed line (24) drops below a minimum value and opens when the pressure exceeds the minimum value. To increase the operational reliability of the gas pressure accumulator (10), the valve arrangement (74) closes when the pressure in the feed line (24) exceeds a maximum value and opens when the pressure drops below the maximum value.
Abstract:
A hydraulic accumulator, especially a hydraulic damper, includes a connecting piece for producing fluid communication between the interior of the hydraulic accumulator and at least two fluid connecting lines in a fitting. The connecting piece is connected to the fitting. The connecting piece is provided with at least one annular channel in its outer periphery in such a way that the connecting section of the connecting piece leading to the interior of the hydraulic accumulator is in fluid communication with the connecting line in the fitting through the annular channel. A compact construction is obtained that avoids the disadvantages of long lines.
Abstract:
The present invention discloses a pressure fluid accumulator with a housing having its interior subdivided into two chambers by a media-separating element, the first chamber being filled with a gas and the second chamber being filled with a liquid, and wherein in a hydraulic port a bottom valve is provided whose closure member is operable by the media-separating element and which permits filling the second chamber with liquid and prevents complete evacuation of the second chamber. In order to prevent a damage of the bottom valve and an inadvertent escape of fluid and, thus, ensure a considerable increase in the reliability in operation, according to the present invention, the closure member can be moved by the media-separating element to adopt a position in which it fulfils the function of a hydraulic piston.
Abstract:
A liquid reservoir, particularly for use in an hydraulic system. The reservoir includes a container and a cover cap, and it is intended for containing an hydraulic pressure medium. A pressure equalization component is provided within the container for compensating for pressure differences between the interior of the container and the surrounding atmosphere, and a level compensation component is provided for compensating for changes in the volume of the pressure medium. The pressure equalization component is functionally separate from the level compensation component.