Abstract:
The present invention provides a polishing apparatus comprising a holding means for holding a polished body with a polished surface thereof facing upwardly, and a polishing head for holding a polishing pad having a polishing surface having an area smaller than an area of the polished surface while contacting the polishing pad with the polished surface and for rotating the polishing pad around its rotation axis, and wherein the polishing head is provided with a drive means for revolving the polishing pad around a revolution axis, and the revolution axis and the rotation axis are positioned so that a distance between the revolution axis and the rotation axis becomes smaller than a radius of the polishing pad.
Abstract:
A system for polishing a semiconductor wafer, the system comprising a wafer polishing assembly for polishing a face of a semiconductor wafer at a polishing rate and a polishing uniformity, the wafer polishing assembly including a platen subassembly defining a polishing area, and a polishing head selectively supporting a semiconductor wafer and holding a face of the semiconductor wafer in contact with the platen subassembly to polish the wafer face; and a controller selectively adjusting one of a plurality of adjustable polishing parameters during polishing of the wafer.
Abstract:
A retainer for retaining an abrasive pad on a lens making machine and an abrasive pad adapted to such retention comprises a retainer nestable with a lap of a lens making machine wherein when such retainer is nested, a pad placed upon said lap before nesting will be trapped in the desired position. The pad of the invention includes radially outwardly extending members beyond the working area of the pad whose purpose is to be trapped by the retainer. The invention enables automatic loading and unloading of pads on the lens making machine.
Abstract:
The thickness of a layer on a substrate is measured in-situ during chemical mechanical polishing. A light beam is divided through a window in a polishing pad, and the motion of the polishing pad relative to the substrate causes the light beam to move in a path across the substrate surface. An interference signal produced by the light beam reflecting off the substrate is monitored, and a plurality of intensity measurements are extracted from the interference signal. Each intensity measurement corresponds to a sampling zone in the path across the substrate surface. A radial position is determined for each sampling zone, and the intensity measurements are divided into a plurality of radial ranges according to the radial positions. The layer thickness is computed for each radial range from the intensity measurements associated with that radial range.
Abstract:
An apparatus for use in a chemical mechanical planarization (CMP) system is provided. A head capable of being positioned at a proximate location over a polishing pad includes an input and an output defined in the head. The input is capable of delivering a fluid at the proximate location on the surface of a polishing pad. The output being oriented adjacent to the input is capable of removing at least part of the fluid delivered onto the surface of the polishing pad. A method for controlling properties of a film over a polishing pad surface is also provided.
Abstract:
Disclosed is a turning tool for cutting circumferential grooves into a surface of a polishing pad formed of a resin material and utilized for polishing semiconductor devices. The turning tool comprising a cutting part arranged to have a tooth width within a range of 0.005-1.0 mm, a wedge angle within a range of 15-35 degrees, and a front clearance angle within a range of 65-45 degrees. A polishing pad effectively formed by using the turning tool, and an apparatus and a method of producing such a polishing pad by utilizing the turning tool are also disclosed.
Abstract:
An apparatus and method for polishing objects, such as semiconductor wafers, utilizes one or more polishing surfaces, multiple wafer carriers and at least one load-and-unload cup. The load-and-unload cup may be configured to move to and from the wafer carriers in a pivoting manner. The load-and-unload cup may be configured to move to and from the wafer carriers in a linear reciprocating manner. The wafer carriers may be configured to move to and from the load-and-unload cup in a pivoting manner. The wafer carriers may be configured to move to and from the load-and-unload cup in a linear reciprocating manner.
Abstract:
A lapping machine comprises a lapping surface plate (1) rotated by a rotating mechanism, a lapping jig (28) having a plurality of projections to bottom surfaces of which a work (30) to be lapped by a lapping surface on the lapping surface plate (1) is fitted, amount-of-projection adjusting elements (29) for adjusting the variation of the plurality of projections (28c) to the lapping surface plate (1) individually, and a control circuit (36) for outputting variation-of-projection control signals to the variation-of-projection adjusting elements (29).
Abstract:
A method of producing a glass substrate for a mask blank has the steps of measuring a convex/concave profile of a surface of the glass substrate, controlling a flatness of the surface of the glass substrate to a value not greater than a predetermined reference value by specifying the degree of convexity of a convex portion present on the surface of the glass substrate with reference to a result of measurement obtained in the profile measuring step and executing local machining upon the convex portion under a machining condition depending upon the degree of convexity, and polishing, after the flatness control step, the surface of the glass substrate subjected to the local machining by the action of a machining liquid interposed between the surface of the glass substrate and a surface of a polishing tool without direct contact therebetween.
Abstract:
An in-situ measurement of thickness profiles of polishing pads (1) used in chemical mechanical polishing (CMP) is enabled by arranging sensors (7) for measuring distances together with a conditioner (6). The sensors (7) are provided as e.g. laser sensors (7a-c) performing an indirect measurement from a calibrated height level above the pad (1) surface or as e.g. laser (7a-c) or ultrasonic sensors (7e) performing a direct thickness measurement from the pad surface to the pad-platen contact surface. A thickness profile (10) is obtained by co-moving the sensor (7a, 7b) with the conditioner (6) during conditioning or by leading a sensor (7c) along a guide-rail (14) above the pad surface (1) with e.g. a constant distance. A reference distance measurement to the polishing platen (2) can be achieved by a second sensor (7d) mounted at a position, where there is no pad on the platen (2), e.g. a hole the edge. Using the arrangement a disadvantageous thickness profile (10) with a steep slope resulting in polishing inhomogeneities affecting semiconductor device (4) surfaces can be detected and a warning signal be issued. A destructing micrometer measurement is not necessary, thus prolonging the pad (1) lifetime and increasing the device yield.