Abstract:
Core-shell nanoparticles and techniques for their synthesis are described herein. Generally, the nanoparticles comprise a core that includes iron and at least one shell disposed about the core that includes nickel. In certain versions, the nanoparticles are free of precious metals.
Abstract:
An electrochemical article includes: a substrate; a working electrode disposed on the substrate to contact a composition that includes: a fluid; and an analyte to adsorb to the working electrode and comprising an electroactive moiety, the reference electrode being configured to receive a plurality of electrons from the electroactive moiety, to donate electrons to the electroactive moiety, or a combination thereof; a reference electrode disposed on the substrate to contact the fluid; a counter electrode disposed on the substrate to contact the fluid; a heater disposed on the substrate to heat the analyte adsorbed on the working electrode to a selected temperature; and an electrically insulating layer interposed between the heater and the working electrode, the electrochemical article being microfabricated. A process for process for performing electrochemistry includes: introducing a composition to the electrochemical article; and transferring a plurality of electrons between the working electrode and the electroactive moiety to perform electrochemistry.
Abstract:
A hydrogen storage material is provided, the hydrogen storage material comprises a hydride-forming solid disposed in a film, a hydrogen-diffusing solid media disposed in the film with the hydride-forming solid, and a high density of interfaces between the hydride-forming solid and the hydrogen-diffusing solid media in the film. The hydrogen storage material may be made by co-depositing the hydride-forming solid and the hydrogen-diffusing solid media to form the film having different solid phases of the hydride-forming solid and the hydrogen-diffusing solid media and a high density of interfaces therebetween.
Abstract:
A process for depositing a metal includes disposing an activating catalyst on a substrate; contacting the activating catalyst with a metal cation from a vapor deposition composition; contacting the substrate with a reducing anion from the vapor deposition composition; performing an oxidation-reduction reaction between the metal cation and the reducing anion in a presence of the activating catalyst; and forming a metal from the metal cation to deposit the metal on the substrate. A system for depositing a metal includes an activating catalyst to deposit on a substrate; and a primary reagent to form: a metal cation to deposit on the substrate as a metal; and a reducing anion to provide electrons to the activating catalyst, the metal cation, the substrate, or a combination thereof, wherein the primary reagent forms the metal cation and the reducing anion in response to being subjected to a dissociating condition
Abstract:
A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm2 at 7.5 V/μm is demonstrated in a macroscopic emitter array. The emitter is comprised of a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.
Abstract translation:描述了能够以与热源相当的水平发射的冷阴极场致发射电子源。 在宏观发射极阵列中证明了在7.5V /μm下超过6A / cm 2的发射。 发射极由具有均匀分布的发射部位的单片和刚性多孔半导体纳米结构组成,并通过允许控制发射特性的室温工艺制造。 这些电子源可用于广泛的应用,包括微波电子学和医学和安全性的x射线成像。
Abstract:
A system to make ice includes a refrigeration unit and an icemaker disposed in the refrigeration unit. The refrigeration unit is configured to be subjected to a refrigeration cycle; the icemaker is configured to be subjected to a freeze cycle; and the system is configured such that the freeze cycle is synchronized with the refrigeration cycle, asynchronized with the refrigeration cycle, or a combination comprising at least one of the foregoing. A process for controlling an icemaker includes providing a freeze cycle to an icemaker; providing a refrigeration cycle to a refrigeration unit; and constraining the freeze cycle and the refrigeration cycle to control the icemaker.
Abstract:
A flow cytometer system for algal cells includes a flow cell having an interrogation region, a long wavelength illuminator for illuminating algal cells entering the interrogation region, and a short wavelength illuminator for exciting fluorescence within the algal cells. The system also includes one or more photodetectors for measuring the fluorescence, and a data acquisition system that detects the illuminated algal cells in the interrogation region. The data acquisition system controls the illuminators to provide specific timing and intensity conditions for stimulating to fluorescence, and acquires data from the one or more photodetectors to provide information of the algal cells. The system analyzes data at high speeds to allow it to sort cells based on fluorescence and scattering data.
Abstract:
A variable temperature assembly for scanning probe microscopy (SPM) is described which minimizes or eliminates motion of the sample caused by the thermal expansion or contraction of the sample holder assembly and platform/scanning stage on which the assembly is mounted, and minimizes heating or cooling of the platform/stage. In heater form, the variable temperature assembly includes a thin boron nitride puck with one or more high-resistivity wires embedded along an underside of the puck. The puck is suspended from its polished top surface by posts that are secured to the microscope stage. All thermal expansion of the puck occurs in the downward direction, away from the SPM probe-sample interface, thus eliminating relative motion between the probe tip and sample surface. The top surface of the puck remains stationary as a result of the unique geometry of the posts and the puck-post attachment configuration described herein.
Abstract:
Various plasmonic structures in the form of electrochromic optical switches are described which exhibit relatively high optical switching contrast. The switches generally include a collection of nanoslits formed in a thin electrically conductive film. An electrochromic material is disposed on the conductive film and along the sidewalls of the nanoslit(s).
Abstract:
Various aspects are described for selectivity capturing cells or bioparticles on designated surfaces in dielectrophoretic systems and processes. A particular adhesive composition is described for enhancing cell retention. In addition, certain permeable polyester membranes used in the systems and processes are also described.