Abstract:
In a particular embodiment, a method and system are disclosed for measuring ion concentrations for a fluid and determining a degree of sample cleanup during sampling of a fluid downhole. The method includes but is not limited to deploying an ion selective sensor downhole, exposing the fluid to the ion selective sensor downhole, measuring ion concentrations of the fluid over time during sampling and estimating a degree of sample clean up from the ion concentration measurements. The system includes but is not limited to a tool deployed in a wellbore, an ion selective sensor in the tool, a processor in communication with the ion selective sensor and a memory for storing an output from the ion selective sensor.
Abstract:
A downhole laser measurement system useful for evaluating the chemical or elemental composition of geologic formations or formation fluids or interrogating a fiber optic sensor includes a pressure housing, wherein the pressure housing further includes a laser disposed in communication with a laser temperature control chamber; a laser light feedthrough; and an optical sensor array. An associated method of using a laser measurement system in a downhole well bore includes disposing a laser measurement system downhole in a well bore; using the laser to create a laser light, and then outputting the light to an optical sensor array.
Abstract:
An acoustic transducer on a downhole tool sends an acoustic wave through a sensor plate in contact with drilling fluid. Vibrations of the sensor plate are indicative of the impedance of the borehole plate that may be associated with gas influx. A processor analyzes the vibrations and uses an estimated Q of the vibrations to determine gas influx. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
Techniques for evaluating physical aspects of a formation fluid from within a wellbore include changing pressure on a sample of the formation fluid and transmitting at least one acoustic pulse through the fluid sample and analyzing acoustic information collected. Apparatus and methods for the evaluating involve using at least one acoustic transducer. Analyzing typically involves use of formulae that relate the fluid's equation of state and other properties to a change in the sound speed in the fluid as a function of pressure.
Abstract:
A method and apparatus are provided for determining a property of a fluid downhole by using a tunable optical grating to collect a fluid's spectrum over a wavelength region of interest. A property of the fluid is estimated from spectra that are obtained from light that has interacted with the fluid and then been reflected off of the tunable optical grating onto a photodetector.
Abstract:
A formation fluid sample is exposed to a rigidly-supported semi-permeable membrane such as silicone rubber to permit diffusion of gases and vapors from the formation fluid into a vacuum chamber, while at the same time, blocking the passage of any liquids. The membrane-transmitted gas is analyzed in the vacuum chamber by a resonator that reacts with it. The resulting change in resonant frequency of the resonator indicates the presence of a gas that reacts with it. An ion pump or sorbent is associated with the evacuated chamber to maintain the vacuum. The ion pump or sorbent removes gases and vapors from the low-pressure chamber, which have diffused into it from the reservoir sample that is on the opposite (high-pressure) side of the semi-permeable membrane.
Abstract:
A method of analyzing acoustic data comprising, determining fluid sound speed through connate fluid. The method involves sampling the fluid, sending an acoustic signal into the fluid between a first and a second reflective interface. Data is recorded that represents acoustic signals over time as they are reflecting from the interfaces. A smoothed first derivative with respect to time of the cumulative sum of squares (CSS) of the filtered amplitude data is determined. This first derivative is cross correlated to the time-shifted versions of itself.
Abstract:
The disclosure, in one aspect, provides a method for providing an image of a fluid that includes passing light through the fluid, detecting light passing through the fluid at least one wavelength and producing signals corresponding to the detected light, and processing the signals to provide the image of the fluid.
Abstract:
The present invention provides a method and apparatus for performing elemental analysis of a formation fluid downhole. The present invention provides elemental analysis of a formation fluid downhole using breakdown spectroscopy. In one aspect of the invention, a method and apparatus are provided for performing laser induced breakdown on a formation fluid sample is provided. In another aspect of the invention a method and apparatus are provided for performing spark induced breakdown spectroscopy. Plasma is induced in a fluid under test downhole. Emissions from the plasma are analyzed to determine the elemental composition of the fluid under test. Emissions include but are not limited to light in the ultraviolet, visible, and near infrared regions of the spectrum. A spectrometer is provided for elemental analysis of a fluid downhole. Elemental analysis yields information about the fluid and the formation from which the fluid originated.
Abstract:
A sampling system used in collecting samples of connate fluid from within hydrocarbon bearing formations. The sampling system comprises a sonde disposed within a wellbore formed proximate to the formation of interest. The sonde includes a sample probe insertable into the formation and a drawdown pump in fluid communication with the sample probe. The drawdown pump is motivated by an associated electrically responsive material, where the electrically responsive material can be comprised of a piezoelectric material, a electroactive polymer, or some other electrically responsive material.