Abstract:
Gate driver circuitry that controls an array of display elements is described. The gate driver circuitry has gate drivers that apply a control pulse to each of a number of gate lines in sequence, from a previous gate line to a current gate line, during a frame interval in which the array of display elements is filled with pixel values. Each gate driver has a latch stage followed by an output stage. The output stage is coupled to drive a current gate line, and the latch stage is coupled to drive a) a first hold circuit that holds the current gate line at a predetermined voltage, and b) a second hold circuit that holds a previous gate line at a predetermined voltage. Other embodiments are also described and claimed.
Abstract:
A display may have a liquid crystal layer sandwiched between a thin-film transistor layer and a color filter layer. An upper polarizer may be placed on top of the thin-film transistor layer. A lower polarizer may be placed under the color filter layer. Components may be bonded to bond pads on the inner surface of the thin-film transistor layer using anisotropic conductive film. Bond quality may be assessed by probing probe pads that are coupled to the bond pads or by visually inspecting the bond pads through the thin-film transistor layer. Opaque masking material in the inactive area may be provided with openings to accommodate the bond pads. Additional opaque masking material may be placed on the underside of the upper polarizer and on the upper surface of the thin-film transistor layer to block the openings from view following visual inspection.
Abstract:
A display may have an array of pixels arranged in rows and columns. Each pixel may have a transistor for controlling the amount of output light associated with that pixel. The transistors may be thin-film transistors having active areas, first and second source-drain terminals, and gates. Gate lines may be used to distribute gate control signals to the gates of the transistors in each row. Data lines that run perpendicular to the gate lines may be used to distribute image data along columns of pixels. The gate lines may be connected to gate line extensions that run parallel to the data lines. The data lines may each overlap a respective one of the gate line extensions. Vias may be used to connect the gate line extensions to the gate lines. The gate line extensions may all have the same length.
Abstract:
An electronic device may have a flexible display with portions that are bent along a bend axis. The display may have display circuitry such as an array of display pixels in an active area. Contact pads may be formed in an inactive area of the display. Signal lines may couple the display pixels to the contact pads. The signal lines may overlap the bend axis in the inactive area of the display. During fabrication, an etch stop may be formed on the display that overlaps the bend axis. The etch stop may prevent over etching of dielectric such as a buffer layer on a polymer flexible display substrate. A layer of polymer that serves as a neutral stress plane adjustment layer may be formed over the signal lines in the inactive area of the display. Upon bending, the neutral stress plane adjustment layer helps prevent stress in the signal lines.
Abstract:
Systems including and methods for forming a backplane for an electronic display are presented. The backplane includes interlaced crystallized regions, and the interlaced crystallized regions include at least a left column of crystallized regions and a right column of crystallized regions. The left and right columns include rows of crystallized regions with gaps disposed between each of the rows. Furthermore, each crystallized region in the left column extends into a corresponding gap in the right column, and each crystallized region in the right column extends into a corresponding gap in the left column.
Abstract:
A display having data lines that can be configured between a display mode and a touch mode is disclosed. The display can have sense regions for sensing a touch or near touch on the display during the touch mode. These same regions can display graphics or data on the display during the display mode. During display mode, the data lines in the sense regions can be configured to couple to display circuitry in order to receive data signals from the circuitry for displaying. During touch mode, the data lines in the sense regions can be configured to couple to corresponding sense lines in the regions, which in turn can couple to touch circuitry, in order to transmit touch signals to the circuitry for sensing a touch or near touch. Alternatively, during touch mode, the data lines in the sense regions can be configured to couple to ground in order to transmit residual data signals to ground for discarding.
Abstract:
Methods and devices employing charge removal circuitry are provided to reduce or eliminate artifacts due to a bias voltage remaining on an electronic display after the display is turned off. In one example, a method may include connecting a pixel electrode of a display to ground through charge removal circuitry while the display is off (e.g., using depletion-mode transistors that are active when gates of the depletion-mode transistors are provided a ground voltage). When a corresponding common electrode is also connected to ground, a voltage difference between the pixel electrode and common electrode may be reduced or eliminated, preventing a bias voltage from causing display artifacts in the pixel.
Abstract:
This relates to displays for which the use of dual function capacitive elements does not result in any decreases of the aperture of the display. Thus, touch sensitive displays that have aperture ratios that are no worse than similar non-touch sensing displays can be manufactured. More specifically, this relates to placing touch sensing opaque elements so as to ensure that they are substantially overlapped by display related opaque elements, thus ensuring that the addition of the touch sensing elements does not substantially reduce the aperture ratio. The touch sensing display elements can be, for example, common lines that connect various capacitive elements that are configured to operate collectively as an element of the touch sensing system.
Abstract:
A method is provided for fabricating a thin-film transistor (TFT). The method includes forming a semiconductor layer over a gate insulator that covers a gate electrode, and depositing an insulator layer over the semiconductor layer, as well as etching the insulator layer to form a patterned etch-stop without losing the gate insulator. The method also includes forming a source electrode and a drain electrode over the semiconductor layer and the patterned etch-stop. The method further includes removing a portion of the semiconductor layer beyond the source electrode and the drain electrode such that a remaining portion of the semiconductor layer covers the gate insulator in a first overlapping area of the source electrode and the gate electrode and a second overlapping area of the drain electrode and gate electrode.
Abstract:
An electronic device may have a flexible display. The display may have portions that are bent along a bend axis. The display may have display circuitry such as an array of display pixels in an active area and signal lines, thin-film transistor support circuitry and other display circuitry in an inactive area of the display surrounding the active area. The display circuitry may be formed on a substrate such as a flexible polymer substrate. The flexible polymer substrate may be formed by depositing polymer on a support structure that has raised portions.The raised portions may create locally thinned regions in the flexible polymer substrate. The reduced thickness of the flexible polymer substrate in the thinned regions may help ensure that a neutral stress plane that is associated with bending the display along the bend axis is aligned with the display circuitry, thereby minimizing stress in the display circuitry.