Abstract:
In some embodiments, a user equipment device (UE) implements improved communication methods which include radio resource time multiplexing, dynamic sub-frame allocation, and UE transmit duty cycle control. In some embodiments, the UE may communicate with base stations using radio frames that include multiple sub-frames, transmit information regarding allocation of a portion of the sub-frames of a respective radio frame for each of a plurality of the radio frames, and transmit and receive data using allocated sub-frames and not using unallocated sub-frames. In some embodiments, the UE may operate according to a sub-frame allocation based on its current power state. The UE may transmit information to the base station and receive the sub-frame allocation based on at least the information. In some embodiments, the UE may switch transmit duty cycles based on an occurrence of a condition at the UE. The UE may inform the network of the switch.
Abstract:
A system, apparatus and method to maintain continuity of a Voice over Long Term Evolution (LTE) (VoLTE) call. The system includes a first user equipment (UE) configured to perform a (VoLTE) call and a second UE configured to perform the VoLTE call with the first UE. The UE's are configured to maintain continuity of the VoLTE call by determining when one of a first dedicated bearer linked to a first default bearer of the first UE or a second dedicated bearer linked to a second default bearer of the second UE is lost and transmitting a signal to an Internet Protocol (IP) Multimedia Subsystem (IMS) server that prevents release of the determined dedicated bearer, the signal further triggering a re-activation of the determined dedicated bearer.
Abstract:
This disclosure relates to techniques for dynamically changing coverage modes and/or communication bandwidth in a wireless communication system. According to some embodiments, a wireless device may attach to a serving cell associated with a cellular network. A volume of data for upcoming communication with the cellular network may be determined. An indication of a requested communication bandwidth may be provided to the serving cell. The wireless device may communicate data with the serving cell using the requested communication bandwidth. In some instances, a request for narrowband communication bandwidth may result in use of a coverage enhancement mode, while a request for wideband communication bandwidth may result in use of a normal coverage mode.
Abstract:
In some embodiments, a user equipment device (UE) implements improved communication methods which include radio resource time multiplexing, dynamic sub-frame allocation, and UE transmit duty cycle control. In some embodiments, the UE may communicate with base stations using radio frames that include multiple sub-frames, transmit information regarding allocation of a portion of the sub-frames of a respective radio frame for each of a plurality of the radio frames, and transmit and receive data using allocated sub-frames and not using unallocated sub-frames. In some embodiments, the UE may operate according to a sub-frame allocation based on its current power state. The UE may transmit information to the base station and receive the sub-frame allocation based on at least the information. In some embodiments, the UE may switch transmit duty cycles based on an occurrence of a condition at the UE. The UE may inform the network of the switch.
Abstract:
A wireless communication device (UE) may include random access memory and associated software configured to selectively place different memory banks into either an active power on mode, retention mode, or power off mode. The selective placement of memory banks into different modes may be performed based on a variety of factors including software module voting information, a current power mode of the memory banks, one or more software program(s) and/or data currently stored on the memory banks, and a counter that counts an amount of time during which a memory bank is not accessed. The placement of memory banks into different modes may be controlled by a memory controller coupled to the memory banks.
Abstract:
This disclosure relates to radio link monitoring techniques. According to some embodiments, a wireless device may establish a radio link with a cellular base station according to a radio access technology. The base station may provide reference signals, control signals, and data signals to the wireless device via the radio link. The wireless device may perform radio link monitoring of the radio link using characteristics of decoding performance for one or more of the control signals and the data signals. Performing radio link monitoring of the radio link may include determining whether the radio link is in-sync or out-of-sync and determining whether radio link failure has occurred.
Abstract:
A method, system, and apparatus are described for managing a device in a mixed wireless communication system. A device may decide to scan or not scan for a cell based on (or at least on) updating information. The updating information may be used together or individually. The updating information may be maintaining a time window in conjunction with a device's motion status, maintaining a list that tracks cell identity in areas of non-service, or utilizing network deployment information.
Abstract:
Methods, apparatuses and computer-readable media are described that configure wireless circuitry of a wireless device. The wireless device establishes a connection to a first wireless network using first and second receiving signaling chains. The wireless device obtains a configuration processing delay time for the first wireless network and sends a first channel status report having a rank indicator value of one before starting a tune-away event at a time based on the obtained configuration processing delay time. The wireless device reconfigures at least one of the radio frequency signaling chains to receive signals from a second wireless network during the tune-away event. The wireless device subsequently sends a second channel status report having a rank indicator value greater than one before ending the tune-away event and reconfiguring the at least one of the radio frequency receive signaling chains back to the first wireless network.
Abstract:
A user equipment device (UE) may transmit, in a packet to a base station, information associated with resource configuration/resource requirement corresponding to wireless uplink communications of the wireless communication device. The base station may assign resources to the UE based on the received information. The UE may receive an uplink grant from the base station, with the uplink grant specifying resources for use by the wireless communication device during the uplink communications based on the information previously transmitted to the base station by the wireless communication device. The UE may send the packet at the time a voice call with the UE is initiated, and/or the UE may transmit the information during voice calls in response the UE changing one or more resource configuration parameters during the voice call. The UE may use Robust Header Compression packets of various types to transmit the resource configuration information.
Abstract:
Methods and apparatus for managing radio measurements during discontinuous reception. In one exemplary embodiment, the distribution of Long Term Evolution (LTE) DRX measurements is staggered or distributed across multiple DRX cycles (which may be contiguous or non-contiguous) so as to reduce the transceiver activity and power consumption. The exemplary UE in one implementation only performs a subset of measurements during each DRX cycle. By staggering or distributing cell measurements over multiple DRX cycles, the UE can improve power consumption, while still conforming to measurement requirements.