Abstract:
A method substantially as shown and described in the detailed description and/or drawings and/or elsewhere herein. A device substantially as shown and described in the detailed description and/or drawings and/or elsewhere herein.
Abstract:
A semiconductor-transistor-based system and device that are designed to, but are not limited to: electronically outputting electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted-user-menu-selection display associated with electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted collection of user-physiological information, associated with electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted collection of user-conduct information, and associated with electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted obtaining of food-based information. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
Abstract:
Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for control of transmission to a target device with a cloud-based architecture may implement operations including, but not limited to: receiving localized context information associated with the at least one target device; determining, at least in part via a cloud-based architecture, at least one prospective message transmission practicability index according to a comparison of localized context information and the at least one historical transmission length; and authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to a determination of a prospective message transmission practicability index.
Abstract:
A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, and a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The directional sound emitter may emit ultrasonic waves configured to frequency convert to produce the audio. The communication interface may be configured to identify an entity of interest with which the user wishes to interact based on gestures and/or vocal emissions by the user and may automatically communicatively couple the user to the entity of interest. The hands-free intercom may determine whether remote entities requesting to communicatively couple with the user should be allowed to couple. The hands-free intercom may detect eavesdroppers and warn the user of the detected eavesdroppers.
Abstract:
A system for contamination monitoring includes a tracking component, a material identification component, a procedural component, and a notification component. The tracking component tracks an individual and one or more objects in a work area using a three-dimensional tracking system. The material identification component identifies a material of the one or more objects based on a captured image. The procedural component determines that an object of the one or more objects is contaminated based on tracked locations of the one or more objects and the individual. The notification component provides a notification of the contamination.
Abstract:
Computationally implemented methods and systems include detecting presence of one or more electronic devices near a wearable computing device, the wearable computing device being a computing device designed to be worn by a user; determining which of the one or more electronic devices that are detected as being near the wearable computing device are at least designed to provide one or more specific functionalities that are being sought by the wearable computing device; and acquiring, by the wearable computing device based at least, in part, on said detecting and said determining, one or more specific functionalities that are available through at least one electronic device that was detected as being near the wearable computing device and that was determined to provide the one or more specific functionalities. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
A nanoelectromechanical device is provided. The nanoelectromechanical device includes a nanotube, a first contact, and a first actuator. The nanotube includes a first end, the first end supported by a first structure, a second end opposite the first end, and a first portion. The first actuator is configured to apply a first force to the nanotube, the first force causing the nanotube to buckle such that the first portion couples to the first contact.
Abstract:
Computationally implemented methods and systems include acquiring user preference information of a user that indicates one or more customized food preferences of the user including at least one or more preferences related to integrity of one or more ingredients for use in generating one or more customized food items; identifying one or more capable automated customized food generation machines that have one or more ingredients in one or more sufficient quantities to be able to currently generate at least one customized food item in accordance with the one or more customized food preferences of the user; and presenting, in response at least in part to the identification, one or more indicators that direct the user to at least one automated customized food generation machine. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Described embodiments include an apparatus and a method. In an apparatus, a tracking circuit detects a segment of a path defined by a user contact point moving across a touch sensitive display. A filter predicts a next contiguous segment of the path defined by the user contact point in response to an adaptively learned motion parameter. The adaptively learned motion parameter is based on at least two previous instances of the determined motion parameters respectively descriptive of a motion of a user contact point during its movement across the touch sensitive display. A compensation circuit initiates a display by the touch sensitive display of the detected segment of the path and the predicted next contiguous segment of the path. An updating circuit updates the detected segment of the path and the predicted next contiguous segment of the path as the user contact point moves across the touch sensitive display.
Abstract:
Systems and devices for sampling and profiling microbiota of skin are described which include a replaceable microbe sampling unit including at least one rotatable component, an elongated flexible strip, and a location information storage component, the elongated flexible strip including a microbe-capture region configured to capture at least one type of microbe from one or more regions of a skin surface of an individual, and the location information storage component configured to store information associated with the location of said one or more regions of the skin surface of the individual.