Abstract:
A method of remotely controlling a graphic display unit. Requesting, by a host system, assistance of a remote system relating to a respective application, host system including at least one host graphic display unit displaying operational graphics relating to a dedicated application of the host system. The at least one host graphic display unit of the host system is accessed by the remote system. Graphical application data relating to the respective application display is transmitted from the remote system to the host system. Instructional graphic information is projected on the at least one host graphics display unit. Remotely controlling, by the remote system, the at least one host vehicle graphic display unit by displaying to a user of the host system instructional information relating to the respective application. An adaptive session protocol controls a speed in which data is transmitted from the remote system to the host system.
Abstract:
A method of controlling media content between a portable device and a head control unit. A first link is initiated for transmitting control signals between a control client and a control server. A second link is initiated for transmitting media content between a data server and a data client. The first link has a lower traffic volume capacity than the second link and a shorter latency for the control signals than for the media content signal over the second link. The control client generates control signals identifying a user's request and transmits the control signals to the control server using the first link. The control server provides instructions to the data server for executing the user request. The retrieved media data is transmitted from the data server to the data client using the second link. The media data is output to the user over the media output device.
Abstract:
A communications system including a transmitter and a receiver. The transmitter transmits a signal with normal data symbols and at least one dual-use data symbol, where the dual-use data symbol has user data and more data protection than the normal data symbols. The receiver receives the transmitted signal and decodes the dual-use data symbol and uses information from decoding of the dual-use data symbol to improve a channel estimate for the normal data symbols.
Abstract:
A system for managing wireless connections for a vehicle may include one or more wireless devices, a vehicle communication system, and a vehicle controller in electrical communication with the vehicle communication system. The vehicle controller is programmed to determine a selected device of the one or more wireless devices with which to establish a connection using the vehicle communication system. The vehicle controller is further programmed to establish a wireless connection between the selected device and the vehicle communication system in response to determining the selected device.
Abstract:
A method to identify lane-level road congestion includes: modeling a lane-level congestion evolution process as a 2-dimensional (2D) Markov chain having multiple vehicles moving through a predetermined segment of a road; aggregating a volume of the multiple vehicles over a predetermined unit of time moving through the predetermined segment of a road; populating a lane congestion map identifying individual road lanes having differing levels of congestion; directing an output of the lane congestion map and an output of a lane congestion model to a lane routing engine; and identifying routes and route changes for a host vehicle to apply to improve a host vehicle estimated time of arrival (ETA) at a predetermined finish location.
Abstract:
A method to incorporate lane level road congestion to enhance vehicle navigation includes: collecting vehicle data from a fleet of vehicles; identifying a lane level distribution of multiple vehicles operating on a road having multiple lanes including a host vehicle; comparing the lane level distribution against a non-congested lane of the road; and identifying if a lane level congestion is occurring in at least one of the multiple lanes.
Abstract:
A method for sharing a digital key associated with a vehicle by a cascaded key delegation system includes issuing, by a requestor device, a public key certificate to an initial delegator device that is part of a cloud delegation service. The public key certificate enables the initial delegator device to grant delegation rights the vehicle. The method also includes issuing, by the initial delegator, an intermediate public key certificate to a subsequent delegator that is part of the cloud delegation service. The intermediate public key certificate grants the delegation rights to the subsequent delegator.
Abstract:
A system for bandwidth saving for wireless cameras using motion vectors includes wireless cameras disposed within the vehicle, and capturing input image data. A control module, having a processor, memory, and input/output (I/O) ports, executes control logic stored in memory. A first control logic receives, real-time input image data from the cameras. A second control logic processes the input image data to maintain (Wi-Fi) bandwidth utilization within the vehicle below a predetermined threshold and maintains and maximizes real-time image data streaming quality through semantic segmentation and background memorization. A third control logic generates an output including background and foreground image portions. The output is transmitted to a human-machine interface (HMI) within the vehicle and periodically replaces the background portion with a cached background scene that is transmitted to the HMI.
Abstract:
A computer is provided for a system for detecting, characterizing, and mitigating road network congestion. The system includes a plurality of motor vehicles. Each motor vehicle includes a telematics control unit (TCU) for generating one or more location signals for a location of the associated motor vehicle and one or more event signals for an event related to the associated motor vehicle. The computer includes one or more processors for receiving the location signal and/or the event signal from the TCU of the associated motor vehicles. The computer further includes a non-transitory computer readable storage medium (CRM) including instructions, such that the processor is programmed to identify a location of the road network congestion at a current time step. The processor is further programmed to track the road network congestion and predict the road network congestion at a next time step.
Abstract:
A multi-static radar detection system for a vehicle includes one or more receivers for collecting multi-carrier modulation signals emitted by one or more transmitters that are positioned at base stations located in an environment surrounding the vehicle. The multi-carrier modulation signals include one or more types of reference signals. The multi-static radar detection system also includes one or more controllers in electronic communication with the one or more receivers. The one or more controllers execute instructions to collect, by the one or more receivers, a multi-carrier modulation signal emitted by the one or more transmitters. The one or more controllers determine a Doppler shift and a time delay of a respective object located within the environment surrounding the vehicle based on an interpolated time-frequency grid; and transform a value for the Doppler shift into a velocity value and a value for the time delay into a range value.