Abstract:
A method for use in a wireless transmit/receive unit (WTRU) for receiving data over physical downlink shared channels from different cells, monitoring physical downlink control channels of a first cell for downlink control information associated with the WTRU, and recovering data from the physical downlink control channel in response to the downlink control information.
Abstract:
A method and apparatus are used for detecting a radio link (RL) failure and a post verification process. A quality of a downlink fractional dedicated physical channel (F-DPCH) is monitored once a transmission on an enhanced dedicated channel (E-DCH) has begun. It is determined whether the quality of the downlink F-DPCH is below a predefined threshold. If the quality is below the predefined threshold, then an occurrence of an RL failure is declared and a transmission over the E-DCH in a cell forward access channel (CELL_FACH) state is terminated. In a case of the post verification failure, E-DCH resources are released.
Abstract:
Systems, methods, and instrumentalities are disclosed for a wireless transmit/receive unit (WTRU) to determine rank, offset, or inter-stream interference control information, for example, which may be associated with uplink MIMO operations. A method to control a WTRU may include receiving a special E-RNTI that is associated with a channel. The channel may be associated with a rank indication. The channel may be an E-AGCH-like channel. The channel may have a similar encoding structure as an E-AGCH. The channel may be an E-ROCH. The channel may be received, and it may be determined that the channel is associated with the special E-RNTI. At least one of a rank or an offset may be determined, and the WTRU may be configured with the determined rank or offset. An inter-stream interference (ISI) offset may be received, for example, via RRC signaling, and may be applied to an uplink transmission of a primary stream.
Abstract:
A method and apparatus for control of uplink feedback information in contention based wireless communications is disclosed. Uplink feedback information such as a channel quality information and hybrid automatic retransmission request (HARQ) acknowledgement/negative acknowledgement (ACK/NACK) information may be transmitted to the universal terrestrial radio access network (UTRAN) by a wireless transmit/receive unit (WTRU) based on explicit and implicit triggers. Providing more frequent and robust information relating to the channel conditions and HARQ status allows the UTRAN to more efficiently utilize the radio resources for downlink data transmissions.
Abstract:
Methods and apparatus for power scaling for multi-carrier wireless terminals are disclosed. Methods and mechanisms are provided for power scaling when a multi-carrier WTRU reaches its maximum output power.
Abstract:
Systems, methods, and instrumentalities are disclosed to manage interference caused by D2D communications. A wireless transmit receive unit (WTRU) may include a processor. The processor may be configured to perform one or more of the following. The processor may determine to send information using a device-to-device transmission via a resource pool from a plurality of resource pools. Each resource pool may be associated with a range of reference signal receive power (RSRP) values. The processor may determine a RSRP measurement of a cell associated with the WTRU. The processor may select a resource pool from the plurality of resource pools based on the RSRP measurement of the cell. The RSRP measurement of the cell may be within the range of RSRP values associated with the selected resource pool. The processor may send the information using the selected resource pool.
Abstract:
Feedback information for multiple serving cells are transmitted on high speed dedicated physical control channel (HS-DPCCH). A slot format for transmitting feedback information is determined based on the number of configured secondary serving cells and whether multiple input multiple-output (MIMO) is configured in the serving cells. Spreading factor is reduced to 128 when two secondary serving cells are configured and MIMO is configured in at least one of the two configured secondary serving cells, or when three secondary serving cells are configured. The serving cells are grouped into feedback groups, each feedback group having one or more serving cells. Channel coding may be applied to feedback information for the feedback groups. The resulting encoded feedback information for the feedback groups is concatenated to form composite feedback information.
Abstract:
A method and an apparatus for simultaneously receiving on two carriers and performing discontinuous transmission (DTX) and discontinuous reception (DRX) in dual cell high speed downlink packet access (DC-HSDPA) are disclosed. A wireless transmit/receive unit (WTRU) receives a message for activating DRX for at least one of an anchor carrier and a supplementary carrier and applies the same DRX pattern to the anchor carrier and the supplementary carrier upon reception of the message. The message may be received via a high speed shared control channel (HS-SCCH) order. The WTRU may activate or de-activate the supplementary carrier based on the physical layer signal. Upon activation of the supplementary carrier, the WTRU may apply the same DRX pattern on both the anchor carrier and the supplementary carrier. The WTRU may flush a hybrid automatic repeat request (HARQ) buffer associated with the supplementary carrier upon de-activation of the supplementary carrier.
Abstract:
The disclosure pertains to methods and apparatus for transmitting uplink data to a wireless network asynchronously comprising generating data for transmission to the network on an uplink shared channel (UL-SCH) transport channel, selecting between transmitting the data to the network orthogonally or non-orthogonally, and transmitting the data on the selected physical channel.
Abstract:
A method, apparatus, and system for multiplexing data for multiple wireless transmit/receive units (WTRUs) in a subframe are disclosed. A WTRU may receive a common control information message for a group of WTRUs time multiplexed in one subframe and a WTRU-specific control information message for a corresponding WTRU. The WTRU may determine whether the common control information message is directed to the WTRU based on a group WTRU identity. The WTRU may determine whether the WTRU-specific control information message is directed to the WTRU based on a WTRU-specific identity for the WTRU. The WTRU may receive a physical downlink shared channel on a WTRU-specific transmission time interval (TTI) within the subframe based on decoding common control information message with the group WTRU identity. The WTRU may decode the physical downlink shared channel using the common control information message and the WTRU-specific control information message for the WTRU.