Abstract:
A touch-screen apparatus and method are described for controlling an online video game. For example, one embodiment of a touch-screen apparatus comprises: a touch-screen display for displaying images and receiving user input in response to a user touching the touch screen display; a network interface for establishing a network connection with a gaming server executing a video game in response to user input from the apparatus, the gaming server compressing video output from the video game to generate interactive compressed streaming video, and transmitting the interactive compressed streaming video generated by the video game over the network connection to the touch-screen apparatus; a memory for storing program code and a processor for processing the program code to generate a touch-screen graphical user interface (GUI) comprising: a plurality of user input elements providing user input in response to the user selecting the user input elements on the touch screen display; wherein the user input is transmitted from the touch-screen apparatus to the gaming server to control the execution of the video game.
Abstract:
A method for remote-hosted video effects includes receiving control input from a device. A wall of video tiles is rendered in a hosting service that is streaming interactive video. The wall of video tiles is warped in 3D based on the control input received.
Abstract:
Apparatus for video gaming includes a box having a slot with an interface that connects to a game card providing a platform to run a software video game. The game card outputs video game data through the interface at a data rate of approximately 200 Mbps or greater. A unit processes the video game data for output to a display device. A wireless transceiver is included to receive the software video game via a wireless local area network (WLAN) and to transmit game information to a remote player having access to the WLAN during interactive play of the software video game. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A system and method are described in which space-time coding techniques are used to transmit and receive multiple data streams within a near vertical incidence skywave (“NVIS”) communication system. Within the NVIS communication system, multiple independent data streams may be transmitted from a transmitting station at a high radiation angle, approaching or reaching 90 degrees. The data streams are reflected off of the ionosphere of the earth and received by one or more receiving stations. In one embodiment, the space-time coding techniques are multiple-input multiple-output (“MIMO”) signal communication techniques.
Abstract:
A system and machine-implemented method are described for communicating with a plurality of distributed-input-distributed-output (DIDO) clients. For example, a method according to one embodiment comprises: determining channel state information (CSI) defining a channel state between each of a first plurality of DIDO antennas and each of the DIDO clients; using the CSI to determine distributed-input-distributed-output (DIDO) precoding weights for each of the channels between each of the first plurality of DIDO antennas and the antennas of each of the DIDO clients; using the CSI and DIDO precoding weights to determine link quality metrics defining link quality between each of the first plurality of DIDO antennas and the antennas of each of the DIDO clients; using the link-quality metrics, to determine modulation coding schemes (MCSs) for different DIDO clients; and transmitting precoded data streams from each of the first plurality of DIDO antennas to each of the individual DIDO clients using the determined MCSs for those clients.
Abstract:
A system and method are described for performing motion capture on a subject using transparent makeup, paint, dye or ink that is visible to certain cameras, but invisible to other cameras. For example, a system according to one embodiment of the invention comprises the application of makeup, paint, dye or ink on a subject in a random pattern that contains a phosphor that is transparent in the visible light spectrum, but is emissive in a non-visible spectrum such as the infrared (IR) or ultraviolet (UV) spectrum; using visible light such as ambient light or daylight to illuminate the subject; using a first plurality of cameras sensitive in the visible light spectrum to capture the normal coloration of the subject; and using a second plurality of cameras sensitive in a non-visible spectrum to capture the random pattern.
Abstract:
An apparatus for capturing images. In one embodiment, the apparatus comprises: a coded lens array including a plurality of lenses arranged in a coded pattern and with opaque material blocking array elements that do not contain lenses; and a light-sensitive semiconductor sensor coupled to the coded lens array and positioned at a specified distance behind the coded lens array, the light-sensitive sensor configured to sense light transmitted through the lenses in the coded lens array.
Abstract:
A system is described for capturing images comprising: a display for displaying graphical images and text; a plurality of apertures formed in the display; an image detector array configured behind the display and configured to sense light transmitted through the apertures in the display, the light reflected from a subject positioned in front of the display; and image processing logic to generate image data using the light transmitted through the apertures, the image data representing an image of a subject.
Abstract:
A computer-implemented system and method are described for performing video compression. For example, a method according to one embodiment comprises: encoding a plurality of video frames or portions thereof according to a first encoding format, the first encoding format being optimized for transmission to a client device over a current communication channel; transmitting the plurality of encoded video frames or portions to the client device over the communication channel; concurrently encoding the first plurality of video frames according to a second encoding format, the second encoding format having a relatively higher-quality compressed video and/or a lower compression ratio than the first encoding format; storing the first plurality of video frames encoded in the second encoding format on a storage device; and making the first plurality of video frames encoded in the second encoding format available to the client device and other client devices for playback of the video stream.
Abstract:
A system and method are described for intelligently allocating client requests to server centers provide real-time streaming interactive video. For example, one embodiment of a computer-implemented method comprises: strategically positioning a plurality of application server centers at different geographical locations; receiving a request from a client to execute an online application; determining the latency requirements based on the type of application requested by the client; and forwarding the client request to a particular application server center within the plurality based at least on the latency requirements of the requested application.