Abstract:
The illustrative embodiments described herein are directed to an apparatus, system, and method for storing liquid from a tissue site. The apparatus may include a drape having an aperture, and a fluid pouch coupled to the drape such that the fluid pouch is in fluid communication with the aperture. In one embodiment, the fluid pouch is operable to transfer reduced pressure to the aperture such that the liquid from the tissue site is drawn into the fluid pouch. The fluid pouch may have a cavity that stores the liquid that is drawn from the tissue site. In another embodiment, the fluid pouch may include at least one baffle. The fluid pouch may also include a fluid channel at least partially defined by the at least one baffle. The fluid channel may be operable to store liquid from the tissue site when reduced pressure is applied through the fluid channel.
Abstract:
A moisture trap for removing liquid from a fluid drawn from a tissue site treated with reduced pressure and systems and methods for using the same are described. The moisture trap may include a barrier adapted to be fluidly coupled to and define an indirect fluid path between a fluid reservoir and a reduced-pressure source. The barrier may have a hydrophilic surface. The moisture trap also may include a sump adapted to receive condensation from the barrier.
Abstract:
A system suitable for treating a tissue site may include an interface manifold, an interface sealing member, an absorbent layer, and a storage sealing member. The interface manifold may be positioned in fluid communication at the tissue site. The interface sealing member may be adapted to provide a sealed treatment space relative to the tissue site, and the interface manifold may be positioned in the sealed treatment space. The absorbent layer may be for positioning on an exterior facing side of the interface sealing member. The storage sealing member may be adapted to provide a sealed storage space between the storage sealing member and the exterior facing side of the interface sealing member. The absorbent layer may be positioned in the sealed storage space. Other systems, apparatuses, and methods are disclosed.
Abstract:
An adapter for providing fluid communication with a tissue site may include a base, a conduit housing, a primary port, at least one ancillary port, and at least one port extension. The base may define a mounting plane having a first planar side and a second planar side opposite the first planar side. The conduit housing may be supported by the base and may include a recessed region defining an entry surface. The conduit housing and the recessed region may be positioned on the first planar side with the entry surface facing the first planar side. The primary port may be on the entry surface, and the at least one ancillary port may be on the entry surface. A distal end of the port extension may be positioned on the second planar side in fluid communication with the ancillary port. Other devices, systems, and methods are disclosed.
Abstract:
Inline storage pouches and systems for receiving and retaining body fluids from an animal are presented. The inline storage pouch include a flexible pouch body has an interior portion with a fluid storage material disposed within the interior portion. In addition to receiving body fluids, the inline storage pouch may fluidly couple a pressure sensing conduit between a first port and a second port using a first bypass conduit. The first port may be a patient-port interface. The second port may be a device-port interface. Multiple sensors and bypass conduits may be included and associated with a microprocessor that is configured to locate blockages or determine when the inline storage pouch is full. Another inline storage pouch has two chambers and receives and discharges fluids from a pouch connector. Other pouches, systems, and methods are presented herein.
Abstract:
Systems and apparatuses for administering reduced pressure treatment to a tissue site include a reduced pressure source, a drape having a plurality of projections for contacting the tissue site, and an adhesive connected to at least a portion of the drape for sealing the drape to a portion of a patient's intact epidermis.
Abstract:
Wound dressings, systems, and methods are presented for treating a wound on a patient's limb, such as a venous leg ulcer. The dressings, systems, and methods involve creating airflow within the dressing to vaporize and remove liquid. The airflow may begin when the dressing becomes saturated. The dressings may be used to provide compression and reduced pressure to the wound. Other systems, methods, and dressings are presented herein.
Abstract:
An open-cavity, reduced-pressure treatment device and system for treating a cavity in a patient's body, such as an abdominal cavity, is presented. In one instance, an open-cavity, reduced-pressure treatment device includes a plurality of encapsulated leg members, each having an interior portion with a leg manifold member and formed with fenestrations operable to allow fluid flow into the interior portion, and a central connection member fluidly coupled to the plurality of encapsulated leg members. The central connection member has a connection manifold member. The open-cavity, reduced-pressure treatment devices, systems, and methods allow for, among other things, removal of fluids.
Abstract:
An inline storage-and-liquid-processing pouch for use with body fluids from a patient is presented that involves introducing body fluids into a first chamber in the storage-and-liquid-processing pouch and flowing air through a second chamber. The chambers are separated by a high-moisture-vapor-transfer-rate member. The air flow in the second chamber enhances liquid removal from the first chamber across the high-moisture-vapor-transfer-rate member. Other systems, devices, and methods are disclosed herein.
Abstract:
A reduced pressure tissue treatment system includes an applicator having an aperture, a first pad section, and a second pad section substantially covering the aperture and positioned substantially adjacent the first pad section. A fabric layer is located at least partially between the second pad section and the drape, and the fabric layer includes a woven or non-woven fabric made from a fiber material. A drape substantially covers the first pad section, the second pad section, the fabric layer, and the applicator. A reduced pressure source is in fluid communication with at least one of the first pad section and the fabric layer for providing reduced pressure to the aperture.