Abstract:
A process for forming microcapsules comprising (i) providing a solution of a protein in an aqueous solvent and (ii) spraying the said solution into a gas such that the aqueous solvent evaporates, thereby forming hollow microcapsules, characterised in that the aqueous solution contains a liquid of greater volatility than water. The protein is preferably albumin and the volatile liquid is preferably ethanol. The microcapsules may be used as ultrasound echogenic contrast agents.
Abstract:
A process for preparing nanoparticles, microparticles and nanoencapsulated products using the PIN process is provided. The invention involves using additives to reduce the aggregation or coalescence of the PIN nanoparticles, microparticles, or nanoencapsulated products during their formation and collection and to facilitate the recovery of said nanoparticles, microparticles, or nanoencapsulated products.
Abstract:
The invention relates to a spray-dried composition comprising an active ingredient dispersed in a carrier comprising a combination of a wall-forming carbohydrate material with from 1 to 30% by weight of agar agar relative to the dried weight of the composition. The composition of the invention provides advantageous behavior in an aqueous environment wherein the mobility of the active agent is restricted in the gelled carrier, thus preventing the release of the agent unless shear of heat are applied. Another feature of the invention is a process for the preparation the spray-dried composition.
Abstract:
Biologically active substances such as cells or tissue are microencapsulated by methods that provide a high proportion of microcapsules containing a core of the biologically active substance as compared to microcapsules not containing the biologically active substance. Microcapsules are obtained having a maximum diameter of 300 micrometers and a high concentration of biologically active substance. A solution of encapsulating material such as alginate containing dispersed biologically active substance is passed through an inner channel of a two-channel spray nozzle to form droplets containing a core of the biologically active substance. Air flow from an outer channel of the nozzle causes the droplets to break off from the nozzle. Conditions of air flow and flow rate of solution are selected to obtain droplets having a volume of 1.5 to 4 times the volume of the biologically active substance that forms the core. The droplets are passed to a precipitation bath containing polycations such as barium ions where the encapsulating material is gelled to form microcapsules containing a core of the biologically active substance and empty microcapsules not containing the biologically active substance. The microcapsules are passed to a density centrifugal separator where the empty microcapsules are separated to obtain the microcapsules containing the biologically active substance. In an alternative method, an electrostatic field is used to separate the droplets from the nozzle.
Abstract:
The present application discloses an agglomerate. The agglomerate comprises a crystalline matrix. The agglomerate may additionally comprise abrasive particles. The agglomerate has a normalized bulk density of less than about 0.38. The present application additionally discloses a method of manufacturing the agglomerate. The agglomerate is manufactured by forming a mixture comprising an abrasive particle with a sol, the sol comprising an oxide and water and introducing the mixture into a spray dryer. The mixture is then dried in the spray dryer. The mixture is then fired, for example in an oven. The resulting agglomerates comprise abrasive particles retained within a crystalline matrix of the oxide. The present invention additionally discloses methods of using the agglomerates of the resent invention.
Abstract:
Novel hollow silicone resin particles, having an average particle size of 0.1 to 100 &mgr;m are disclosed. The silicone resin particles comprise a skin formed from thermoplastic silicone resin configured in the shape of a hollow capsule. The hollow thermoplastic silicone resin particles are prepared by spraying a dispersion of water and thermoplastic silicone resin dissolved in solvent into hot gas. The hot gas evaporates the solvent and water and at the same time causes solidification of the thermoplastic silicone resin while it is in the spray state, so as to form a plurality of hollow particles therefrom.
Abstract:
Microcapsules are prepared by a process comprising the steps of (i) spray-drying a solution or dispersion of a wall-forming material in order to obtain intermediate microcapsules and (ii) reducing the water-solubility of at least the outside of the intermediate microcapsules.Suitable wall-forming materials include proteins such as albumin and gelatin.The microcapsules have walls of 40-500 nm thick and are useful in ultrasonic imaging. The control of median size, size distribution and degree of insolubilisation and cross-linking of the wall-forming material allows novel microsphere preparations to be produced.
Abstract:
Products of a generally spherical nature with particulate matter embedded in the walls are prepared by forming a suspension of said particulate matter in a solution of a film-forming substance in a volatile solvent, spray drying said suspension-solution thereby forming the product which may be further dried if necessary to remove solvent and to "set" the walls. Such products can be used to provide pigmenting, reactive and/or fire retardant properties to organic systems to which they are added as fillers. The density of the product can also be controlled by this method for use as fillers in applications in which segregation of such fillers from the plastic matrix is normally a problem.
Abstract:
Provided is a method of providing an oil emulsion powder comprising electrostatic spray drying an emulsion comprising at least one oil, an encapsulating agent, and optionally an emulsifier at an inlet temperature of 150° C. or below and an exhaust temperature of 100° C. or below.