Abstract:
The present invention is to provide a process for manufacturing a fluorescent film wherein the order of coating the fluorescent films of a color Braun tube and the thickness of the film are adjusted to reduce the amount of red fluorescent material employed for red fluorescent film without deteriorating the quality of the red fluorescent film, thereby lowering the cost for manufacturing. The process first forms the red fluorescent film on the panel of a color Braun tube and then forms the blue and green fluorescent films subsequently thereafter.
Abstract:
A pixel for a backside illuminated (BSI) image sensor includes a semiconductor substrate having a first surface and a second surface, a photoelectric conversion region between the first surface and the second surface to generate charges in response to light received through the second surface, first trench-type isolation region surrounding the photoelectric conversion region and extending vertically from the second surface, a floating diffusion region in the semiconductor substrate below the photoelectric conversion region, and a transfer gate extending vertically from the first surface towards the photoelectric conversion region to transfer the charges from the photoelectric conversion region to the floating diffusion region. The first trench-type isolation region is formed of a negative charge material.
Abstract:
A pixel for a backside illuminated (BSI) image sensor includes a semiconductor substrate having a first surface and a second surface, a photoelectric conversion region between the first surface and the second surface to generate charges in response to light received through the second surface, first trench-type isolation region surrounding the photoelectric conversion region and extending vertically from the second surface, a floating diffusion region in the semiconductor substrate below the photoelectric conversion region, and a transfer gate extending vertically from the first surface towards the photoelectric conversion region to transfer the charges from the photoelectric conversion region to the floating diffusion region. The first trench-type isolation region is formed of a negative charge material.
Abstract:
Disclosed are a porous electroformed shell for forming a grain pattern and a manufacturing method thereof. The method includes the step of causing an epoxy mandrel to be conductive by formation of a conductive thin film thereon; transferring a non-conductive masking pattern on the conductive thin film by using a masking film; generating and growing a fine pore at the position of the non-conductive masking pattern through electroforming; and demolding an electrodeposited layer having the fine pore from the epoxy mandrel, Through the disclosed method, precise control, both as a whole or in part, on a diameter, a formation position, and a density of a fine pore can be simply, economically, and efficiently can be carried out according to various curved shapes of the electroformed shell. Accordingly, in forming the surface of a high-quality surface skin material or a plastic molded product with a predetermined pattern, when the fine pore is used as a decompression suction hole or an air vent, a predetermined pattern can be efficiently and economically obtained in such a manner that it has a regular position, a regular directionality, sharp radii, and minimized deformation.
Abstract:
A method of operating an image sensor, which includes a plurality of pixels including a photo diode that accumulates photocharges generated according to incident light, is provided. The method includes changing a potential of the photo diode by applying a hulk control signal at a first voltage level to a ground terminal, transferring the photocharges accumulated at the photo diode to a floating diffusion node, and generating a pixel signal according to a potential of the floating diffusion node.
Abstract:
There is provided a substrate supporter capable of securely supporting a substrate such as a wafer on which a device having a predetermined thin film pattern is formed to remove various impurities formed on the rear surface of the substrate, and a plasma processing apparatus having the same. The plasma processing apparatus includes: at least one arm; and a supporting portion extending from the arm toward a substrate seating position of the substrate, so that the plasma processing apparatus can reduce the likelihood of arc discharges compared with conventional dry etching to increase process yield and product reliability, and ensure stable mounting of a substrate.
Abstract:
An LCD device is disclosed. The LCD device includes a liquid crystal panel configured to include a bonding portion formed in its one edge, pluralities of gate and data lines arranged on it, and pixel regions defined by the gate and data lines. The bonding portion includes: first metal patterns formed away from each other and on a substrate of the liquid crystal panel; a gate insulation film and a protective layer sequentially formed to cover the first metal patterns; and a second metal pattern formed on the protective layer and electrically connected to the first metal patterns partially exposed by contact holes which are formed by partially etching the gate insulation film and protective layer.
Abstract:
A unit pixel array of an image sensor includes a semiconductor substrate having a plurality of photodiodes, an interlayer insulation layer on a front-side of the semiconductor substrate, and a plurality of micro lenses on a back-side of the semiconductor substrate. The unit pixel array of the image sensor further includes a wavelength adjustment film portion between each of the micro lenses and the back-side of the semiconductor substrate such that a plurality of wavelength adjustment film portions correspond with the plurality of micro lenses.