Abstract:
A touchscreen system has a light transparent panel, a region of display elements below the panel, and a transparent conductor plate that overlays the region of display elements. The transparent conductor plate is made of a number of electrode segments. Touch driver circuits are positioned on the panel and in a border region thereof. Each touch driver circuit has a respective latch and a respective output stage. The output stage is coupled to a respective one of the electrode segments and has a signal input to receive a touch stimulus signal. The touch driver circuits may be operated in shift register fashion so that the touch stimulus signal is pulsed sequentially to the electrode segments. Other embodiments are also described and claimed.
Abstract:
A transistor that may be used in electronic displays to selectively activate one or more pixels. The transistor includes a metal layer, a silicon layer deposited on at least a portion of the metal layer, the silicon layer includes an extension portion that extends a distance past the metal layer, and at least three lightly doped regions positioned in the silicon layer. The at least three lightly doped regions have a lower concentration of doping atoms than other portions of the silicon layer forming the transistor.
Abstract:
A method of connecting to a first metal layer in a semiconductor flow process. Disclosed embodiments connect to the first metal layer by etching a first portion of a viahole through an etch stop layer and a gate insulation layer to reach a first metal layer, depositing a second metal layer such that the second metal layer contacts the first metal layer within the viahole, and etching a second portion of the viahole through a first passivation layer and an organic layer to reach the second metal layer.
Abstract:
A method is provided for fabricating an organic light emitting diode (OLED) display. The method includes forming a thin film transistor (TFT) substrate including a first metal layer and a second metal layer. The method also includes depositing a first passivation layer over the second metal layer, and forming a third metal layer over a channel region and a storage capacitor region. The third metal layer is configured to connect to a first portion of the second metal layer that is configured to connect to the first metal layer in a first through-hole through a gate insulator and the first passivation layer. The method further includes depositing a second passivation layer over the third metal layer, and forming an anode layer over the second passivation layer. The anode is configured to connect to a second portion of the third metal layer that is configured to connect to the second metal layer in a second through-hole of the first passivation layer and the second passivation layer.
Abstract:
Embodiments of the present invention provide for a FFS TFT LCD with a high refresh rate without limiting the aperture of individual pixels. More specifically, embodiments of the invention provide for the use of common bus lines to reduce the effective resistance of the common electrode and to therefore allow for higher refresh rates of the display. Furthermore, the common bus lines can be positioned in such a manner so that they do not further reduce the aperture of the display. More specifically, the common bus lines can be positioned above or below existing elements of the display that are already opaque. Thus, adding the common bus lines need not reduce the aperture. The above can be achieved by, for example, placing the common bus lines above or below existing non-transparent lines, such as gate lines or data lines.
Abstract:
Display ground plane structures may contain slits. Image pixel electrodes in the display may be arranged in rows and columns. Image pixels in the display may be controlled using gate lines that are associated with the rows and data lines that are associated with the columns. An electric field may be produced by each image pixel electrode that extends through a liquid crystal layer to an associated portion of the ground plane. The slits in the ground plane may have a slit width. Data lines may be located sufficiently below the ground plane and sufficiently out of alignment with the slits to minimize crosstalk from parasitic electric fields. A three-column inversion scheme may be used when driving data line signals into the display, so that pairs of pixels that straddle the slits are each driven with a common polarity. Gate line scanning patterns may be used that enhance display uniformity.
Abstract:
A display may have an array of pixels each of which has a light-emitting diode such as an organic light-emitting diode. A drive transistor and an emission transistor may be coupled in series with the light-emitting diode of each pixel between a positive power supply and a ground power supply. The pixels may include first and second switching transistors. A data storage capacitor may be coupled between a gate and source of the drive transistor in each pixel. Signal lines may be provided in columns of pixels to route signals such as data signals, sensed drive currents from the drive transistors, and predetermined voltages between display driver circuitry and the pixels. The switching transistors, emission transistors, and drive transistors may include semiconducting-oxide transistors and silicon transistors and may be n-channel transistors or p-channel transistors.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may have an array of pixels each of which has a light-emitting diode such as an organic light-emitting diode. A drive transistor and an emission transistor may be coupled in series with the light-emitting diode of each pixel between a positive power supply and a ground power supply. The pixels may include first and second switching transistors. A data storage capacitor may be coupled between a gate and source of the drive transistor in each pixel. Signal lines may be provided in columns of pixels to route signals such as data signals, sensed drive currents from the drive transistors, and predetermined voltages between display driver circuitry and the pixels. The switching transistors, emission transistors, and drive transistors may include semiconducting-oxide transistors and silicon transistors and may be n-channel transistors or p-channel transistors.
Abstract:
An electronic device may have a display with touch sensors. One or more shielding layers may be interposed between the display and the touch sensors. The shielding layers may include shielding structures such as a conductive mesh structure and/or a transparent conductive film. The shielding structures may be actively driven or passively biased. In the active driving scheme, one or more inverting circuits may receive a noise signal from a cathode layer in the display and/or from the shielding structures, invert the received noise signal, and drive the inverted noise signal back onto the shielding structures to prevent any noise from the display from negatively impacting the performance of the touch sensors. In the passive biasing scheme, the shielding structures may be biased to a power supply voltage.