摘要:
Disclosed herewith is an information terminal provided with a function for displaying image data. An electromagnetic wave output from a main device provided outside the information terminal is received by an antenna and converted to a binary signal by a wave detection circuit. Using the signal obtained by this wave detection circuit, a power supply circuit generates a power for driving a processor, a memory, a display part, a data line driving signal, a data line driving signal, and a timing controller. The processor decodes the signal received by the wave detection circuit and stores the received information in the memory. The timing controller generates control signals of the data line driving circuit and the scanning line driving circuit, as well as image data so as to display images on the display part.
摘要:
A data driver circuit which enables the square measure of the non-display areas of image display devices to be reduced is to be provided. The driver circuit has two DA converters which convert the digital signals, in accordance with more significant bits thereof, into analog voltages; a voltage divider which divides the output voltages of the two DA converters in accordance with less significant bits of the signals; and a shift register which generates trigger signals in synchronism with the digital signals. The voltage divider, arranged in the gap between the two DA converters, comprises memory elements arrayed in two-dimensional matrixes, and a plurality of resistive wirings. The memory elements store decoded signals generated by the decoders in synchronism with the trigger signals, and selectively supply, in accordance with the decoded signals stored by the memory elements, the divided voltages which derive from the two DA converters and are generated on the resistive wirings.
摘要:
There is provided a method for fabricating an image display device having an active matrix substrate including high-performance transistor circuits operating with high mobility as drive circuits for driving pixel portions which are arranged as a matrix. The portion of a polysilicon film formed in a drive circuit region DAR1 provided on the periphery of the pixel region PAR of the active matrix substrate SUB1 composing the image display device is irradiated and scanned with a pulse modulated laser beam or a pseudo CW laser beam to be reformed into a quasi-strip-like-crystal silicon film having a crystal boundary continuous in the scanning direction so that discrete reformed regions each composed of the quasi-strip-like-crystal silicon film are formed. In virtual tiles TL composed of the discrete reformed regions, drive circuits having active elements such as thin-film transistors or the like are formed such that the channel directions thereof coincide with the direction of crystal growth in the quasi-strip-like-crystal silicon film.
摘要:
An image display has gate-lines and signal-lines in a matrix shape, and has thin film transistors each having: an island-shaped semiconductor layer having source region, drain region, and channel region sandwiched between them; a first insulation film formed between the semiconductor layer and a gate electrode of the same layer as that of the gate-lines; an interlayer insulation film formed above the semiconductor layer; and a source electrode and a drain electrode existing in the same layer as that of the signal-lines. Each capacitor has: a storage electrode of the same layer as that of the gate-lines; an insulation film formed on the storage electrode and being in contact therewith; and an electrode formed on the insulation film and being in contact therewith and existing in the same layer as that of the signal-lines.
摘要:
A display device with a pulse width modulation system in the invention includes a current measuring circuit for measuring a peak current value of a pixel, a reference current value calculating circuit for calculating a reference current value according to at least one of cumulative use time of the pixel and a degraded condition of the pixel, and an anode power supply circuit for controlling the peak current value of the pixel, aiming for the reference current value as a target.
摘要:
Specified thin-film transistors 26 and 27 are caused to conduct by a gradation signal inputted in control circuits 24 and 25, and resistors with a conduction resistance of activated transistors are inserted between any of reference voltages V0, V2, and V4 and an output terminal T1 or between any of reference voltages V1 and V3 and an output terminal T2, and a pair of thin-film transistors 29 in a sampling circuit 23 are caused to conduct simultaneously in sync with the gradation signal. If a signal line SL1 is selected, reference voltages V0, V2, or V4 and V1 or V3 are applied to the signal line SL1, either as they are or as divided by the conduction resistance of the activated thin-film transistors, by using a junction point between the sampling circuit 23 and signal line SL1 as a voltage dividing point.
摘要:
The output lines are connected to the signal lines. The gradation voltage lines are arranged to intersect the output lines. Two switch drive lines are provided for one gradation voltage line. The trigger lines are provided in parallel with the output lines. The switch circuits are provided near the intersections at which those wiring lines intersect each other. The decoder to which the multi-tone image data is fed produces data of “1” on one single switch drive line, and data of “0” on the other switch drive lines. The trigger pulses are sequentially supplied to the trigger lines. Data of “1” is stored in the switch circuit connected to the switch drive line of “1”. The gradation voltages from the gradation voltage lines connected to the switch circuit in which data of “1” is stored are supplied via the output lines to the signal lines.
摘要:
A display device includes plural red, green, and blue pixels provided with current-driven type red-, green-, and blue-light-emitting elements, respectively. A method of driving the display device includes writing a video signal voltage into each of the pixels in a state in which all the light-emitting elements cease to emit light during a first portion of one frame period at a beginning thereof, and then operating a respective one of the light-emitting elements to emit light during at least one portion of the one frame period succeeding the first portion. Each of the at least one portion of the one frame period is determined by light emission characteristics of the respective one of the light-emitting elements, and also is determined by the video signal voltage of the respective one of the pixels.
摘要:
An image display device capable of controlling in a differentiated manner the signal-brightness characteristics of natural pictures and those of different image sources, such as texts, in the screen frame is to be provided. The image display device is provided with a display area in which are arrayed a plurality of pixels each having a light-emitting device whose brightness is controlled with an image signal output voltage supplied from a signal voltage output circuit. The display area comprises first and second pixel groups of pixels connected to different drive voltage lines. The display area has a display characteristic that the first pixel group and the second pixel group are substantially equal in emission spectrum and differ in light emission brightness relative to the same image signal voltage supplied from the signal voltage output circuit.
摘要:
Improvement is to be achieved against poor image quality attributable to voltage drops on wirings, and the image quality especially of large image display devices is to be ameliorated. The circuit configuration comprises a scanning circuit for controlling a plurality of pixel circuits; a plurality of scanning wirings for conveying the signals of the scanning circuit to the pixel circuits; a plurality of first and second wirings for supplying image signals and power to the pixel circuits, arranged in parallel to each other and crossing said scanning wirings; and a drive circuit for supplying image signals and power to the first and second wirings; all disposed over a glass substrate, wherein the drive circuit supplies power to both first and second wirings when the light-emitting devices emit light in response to image signals.