Abstract:
A method of transmitting uplink control information (UCI) in a wireless access system supporting carrier aggregation. A user equipment (UE) receives two or more physical downlink shared channels (PDSCHs) via two or more downlink component carriers, respectively. The UE performs channel coding with respect to the UCI according to a payload size of the UCI including acknowledgement information and channel quality information (CQI) for each of the two or more downlink carriers. The UE performs rate matching with respect to the channel coded UCI for a physical uplink control channel (PUCCH) format 3. The UE transmits the rate matched UCI using the PUCCH format 3.
Abstract:
A method for transmitting sounding reference signals by a user equipment (UE) in a wireless communication system, and the UE therefore are discussed. The method according to one embodiment includes configuring an initial cyclic shift (CS) value and an initial comb value via a higher layer; and setting a comb value for at least one antenna port according to an Equation A. The method according to the embodiment further includes transmitting the sounding reference signals using the comb value via at least one antenna port.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for reporting channel state information. A method in which a terminal reports control state information (CSI) in a wireless communication system according to an embodiment of the present invention comprises: a step of determining rank indicator (RI) report timing for cases where a value of a precoding type indicator (PTI) is 0; a step of determining wideband first precoding matrix indicator (PMI) report timing; a step of determining wideband second precoding matrix indicator report timing and wideband channel quality indicator (CQI) report timing; and a step of reporting said CSI based on the result of the determination on the reporting timing. The CSI which is reported firstly after the RI report timing in cases where the value of the PTI is 0 can be set to become said wideband first PMI.
Abstract:
A method and apparatus for determining candidate cooperative devices of client cooperation in a wireless communication system is provided. In addition, a method and apparatus for determining candidate source devices of client cooperation in a wireless communication system is provided. In addition, a method and apparatus for determining cooperative devices of client cooperation in a wireless communication system is provided. The client cooperation helps a source device communicating with a base station through a cooperative device.
Abstract:
A method for managing link failure, according to one embodiment of the present invention, comprises the steps of: receiving a link failure report (LFR) for notifying that a link between user equipment and an base station of a second RAT has been disassociated; requesting an entity of a first RAT, which manages interworking between the first RAT and the second RAT, to switch a flow of downlink data for the user equipment, which is to be transmitted to the base station of the second RAT, to a base station of the first RAT; establishing a direct tunnel between the base station of the first RAT and the base station of the second RAT by using an identifier of the base station of the second RAT, which is included in the LFR of the user equipment; and relaying the downlink data for the user equipment, which has been buffered in the base station of the second RAT up to before the switch of the flow after the disassociation of the link, from the base station of the second RAT to the user equipment.
Abstract:
The present invention provides a method and apparatus for supporting device-to-device (D2D) communication in a wireless communication system. The present invention obtains information on time and resources required for signal transmission of corresponding user equipment (UE), estimates transmission time of the signal transmission by using the information on time and resources, and checks propagation delay by comparing the estimated transmission time with reception time of a signal transmitted from an actual corresponding UE. The present invention compares the checked propagation delay with predetermined reference values for converting to D2D communication and determines whether to perform D2D communication. Also, the determining D2D communication may include determining conversion to D2D communication by taking account of a channel state of a received signal.
Abstract:
The present invention provides methods and apparatuses for supporting or controlling a small cell on or off procedure. One of the embodiment of the present application, the method comprises steps of receiving, by the MSC from a Source Small Cell (SSC), a cell indication message including a cell state change indication parameter indicating whether the SSC is to be off and a cell off timer parameter indicating a time duration for a cell off process; transmitting, by the MSC to the SSC, a cell off request message in order to accommodate an user equipment (UE) serviced from the SSC based on the cell state change indication parameter; and receiving, by the MSC from the SSC, an aggregated UE context transfer message requesting to perform a radio resource control (RRC) connection switching from the SSC to the MSC during a time duration indicated by the cell off timer parameter.
Abstract:
A method for performing hierarchical beamforming in a wireless access system and a device therefor are disclosed. Particularly, the method comprises: an initial step for allowing a base station to transmit a plurality of first beams, to which different steering vectors are applied, to a terminal through corresponding reference signals, and a repetition step for allowing the base station to transmit a plurality of second beams, to which different steering vectors are applied, to the terminal through corresponding reference signals by considering feedback information that contains an index of one or more beams received from the terminal, wherein the repetition step can be repeated up to a predetermined number of times.
Abstract:
The present invention relates to a method for newly defining a synchronous signal used in a super-high frequency band and acquiring downlink synchronization by using the synchronous signal, and an apparatus for supporting the same. The method for enabling a base station to transmit the synchronous signal in the wireless access system supporting the super-high frequency band, as one embodiment of the present invention, comprises the steps of: generating a general synchronous signal which do not have repetitive characteristics; generating a repetitive synchronous signal on the basis of a repetition factor for estimating a carrier frequency offset of the super-high frequency band; transmitting the general synchronous signal from a first frame; and transmitting the repetitive synchronous signal from a second frame. At this time, the repetition factor indicates the repetitive characteristic of the repetitive synchronous signal.
Abstract:
The present invention defines multiple synchronizing signal resource candidates from/in which a synchronizing signal can be transmitted or detected. The base station according to the present invention transmits a synchronizing signal from a synchronizing signal resource, which corresponds to at least the cell identifier of a cell which is associated with the synchronizing signal, the time synchronization of the cell, the length of a cyclic prefix which is applied to the cell, or the type of the base station, among the multiple synchronizing signal resource candidates. The user equipment according to the present invention can obtain information on at least the cell identifier, the time synchronization with the cell, the length of the cyclic prefix, or the type of the base station, on the basis of the synchronizing signal resource in which the synchronizing signal has been detected.