Abstract:
Methods, apparatuses, systems, and devices are described for wireless communication. In one method, at least a first carrier may be monitored for an indication of a clear channel assessment (CCA) for a second carrier in a shared spectrum, and communication may take place using the second carrier based on the indication. In another method, a CCA may be performed for a second carrier second carrier of a shared spectrum, and an indication of the CCA for the second carrier may be transmitted on a first carrier.
Abstract:
The subject technology provides for performing clear channel assessment (CCA) in LTE-U. Transmissions may be monitored in a resource reserved for CCA. An energy of the transmissions is detected over a shorter duration than an assigned slot in the resource reserved for CCA. A beacon may be transmitted in a slot assigned to a wireless entity for CCA in response to detecting a clear channel based on the monitoring. In another aspect, a beacon transmission for CCA and a timing for the monitoring are adapted in response to detecting the transmissions for a consecutive number of CCA periods. Further, the subject technology provides for adjusting to a maximum power for transmission of a beacon in a slot assigned to a mobile station for CCA in response to detecting a clear channel based on the monitoring.
Abstract:
Long term evolution (LTE)/LTE-Advanced (LTE-A) deployments with unlicensed spectrum leverage more efficient LTE communication aspects over unlicensed spectrum, such as over WIFI radio access technology. In order to accommodate such communications, various downlink procedures may be modified in order to handle communications between licensed and unlicensed spectrum with LTE/LTE-A deployments with unlicensed spectrum.
Abstract:
Long term evolution (LTE)/LTE-Advanced (LTE-A) deployments with unlicensed spectrum leverage more efficient LTE communication aspects over unlicensed spectrum, such as over WIFI radio access technology. In order to accommodate such communications, various uplink procedures may be modified in order to handle communications between licensed and unlicensed spectrum with LTE/LTE-A deployments with unlicensed spectrum.
Abstract:
When enabled with common reference signal interference cancellation, a user equipment (UE) may still compute a channel state feedback value with consideration of any canceled interfering neighboring signals. When the neighboring cells are determined to be transmitting data during the time for which the channel state feedback value is being computed, the UE is able to derive the channel state feedback value considering those canceled interfering signals. The UE determines whether each neighboring cell is transmitting during the designated time either by obtaining signals that indicate the transmission schedule of the neighboring cells or by detecting the transmission schedule, such as based on the power class of the neighboring cells. If the UE determines that the neighboring cells are transmitting data during this time period, the UE will compute the channel state feedback value including consideration of the canceled interfering signals.
Abstract:
Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s).
Abstract:
Methods and apparatus for beamforming for femtocells, such as in LTE wireless networks, to provide inter-cell coordination and interference mitigation are disclosed. A macrocell user equipment (UE) may determine information regarding an interfering femtocell node, such as a home eNodeB (HeNB). The information may be sent directly or indirectly, such as by a backhaul communication link, to the HeNB. The HeNB may adjust an output based on the information. The information may include spatial channel information, which may be used for beamforming at the HeNB output so as to mitigate interference in the direction of the UE.
Abstract:
When enabled with common reference signal interference cancelation, a user equipment (UE) may still compute a channel state feedback value with consideration of any canceled interfering neighboring signals. When the neighboring cells are determined to be transmitting data during the time for which the channel state feedback value is being computed, the UE is able to derive the channel state feedback value considering those canceled interfering signals. The UE determines whether each neighboring cell is transmitting during the designated time either by obtaining signals that indicate the transmission schedule of the neighboring cells or by detecting the transmission schedule, such as based on the power class of the neighboring cells. If the UE determines that the neighboring cells are transmitting data during this time period, the UE will compute the channel state feedback value including consideration of the canceled interfering signals.
Abstract:
A method, a computer program product, and an apparatus are provided. The apparatus may be a UE. The UE receives an information block from a first base station while camped on a second base station. In an aspect, the information block includes an indication of a random access configuration for performing at least a part of a random access procedure. The UE determines to reselect to the first base station from the second base station. The UE performs at least a part of a random access procedure with the first base station based on the indicated random access configuration to reselect from a second base station to the first base station.
Abstract:
A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband.