Abstract:
An ozone generating system and an ozone generating method producing ozone at a high concentration and operating at high efficiency, in which a raw material gas with no nitrogen added and mainly containing oxygen is used. The amount of generation of NOX by-product is null. A raw material gas not containing nitrogen and mainly containing oxygen is supplied to an ozone generator, an AC voltage is applied to produce discharge light having wavelength of 428 nm to 620 nm, a catalytic material containing a photocatalytic material with a band gap energy of 2.0 eV to 2.9 eV is provided on an electrode or a dielectric in a discharge region, gas pressure is kept at 0.1 MPa to 0.4 MPa, and ozone is generated.
Abstract:
An apparatus performs radical treatment by electric discharge. The radical treatment apparatus includes an electrode unit having a gas flow path that blows gas onto treatment water and an electrode member that generates the electric discharge at a leading edge in order to generate a radical from the gas.
Abstract:
An ozone generation cell is disclosed. The ozone generating cell has a first conductor generally having a line geometry and a second conductor having a first groove formed in a surface thereof, and having first and second flanks on opposite sides of the first groove. The second conductor and the first groove are arranged such that the first groove follows the first conductor in parallel spaced-apart relation. The ozone generation cell also has a first dielectric having a first passage-defining portion positioned between the first conductor and the first groove. The first dielectric has first and second side portions on opposite sides of the passage-defining portion that are generally parallel to the first and second flanks respectively. The first passage-defining portion is spaced-apart from only one of the first conductor and the first groove to form a first fluid passageway defined in part by the first passage-defining portion, for conducting fluid from which ozone may be obtained when an electric field of sufficient strength is produced in the first fluid passageway by a potential applied across the first and the second conductors.
Abstract:
An ozone generator including a pair of electrodes separated by a dielectric element including a plurality of passages defining a corona discharge zone. In one embodiment of the invention, the passages may be convoluted in the sense that the lengths of the passages defining the corona discharge zone are greater than the length of the first and second electrodes and the dielectric element. This configuration provides for an extended period of exposure of the gas to the electric field and may result in production of ozone exhibiting improved stability and oxidation rate. In one embodiment, inner and outer concentric electrodes are held in spaced apart relationship by a concentric tubular dielectric. A corona discharge zone is defined between an inner surface of the outer tubular electrode and the outer surface of the concentric tubular dielectric by a plurality of passages formed on the outer surface of the concentric tubular dielectric.
Abstract:
The ozonizer of this present invention is small in size, and capable of generating highly concentrated ozone with a high (generating) efficiency. A low voltage electrode 29 includes a disc-shaped low voltage electrode main body 29a facing a high voltage electrode 8 and an extension 29b equipped at one side of the low voltage electrode main body 29a, and the extensions are laminated in a plurality of layers on a base 1 via blocks 30, and a coolant inlet portion 42 for supplying coolant to a coolant passage 34, a coolant outlet portion 35 for exhausting coolant from the coolant passage 34 and an ozone gas outlet portion 33 for exhausting ozone gas from the ozone gas passage 36 are formed passing through the extensions 29b and the blocks 30, respectively, in a laminating direction of the discharge cells 28.
Abstract:
An ozonizer has a flat plate-shaped low voltage electrode 7, a flat plate-shaped high voltage electrode 3 facing a main surface of the low voltage electrode 7. The ozonizer also has a flat plate-shaped dielectric 5 and a spacer for forming a discharge gap 6 of a thin thickness in a laminating direction provided between the low voltage electrode 7 and the high voltage electrode 3, a high voltage electrode cooling unit 2 for forming a cooling water passage 2c insulated from the high voltage electrode 3 inside the high voltage electrode 3. An alternating voltage is applied between the low voltage electrode 7 and the high voltage electrode 3 and a discharge is produced in the discharge gap 6 injected with oxygen gas to produce ozone gas.
Abstract:
One of the electrodes is covered an insulated material outer skin and is formed with a long wire shape, a band shape or a plate shape. Another of the electrodes is formed with a bare wire by suiting the various shapes and is formed along another insulated core wire and is arranged closely contact with a parallel shape, a right angle shape, a spiral shape, a net shape or a zigzag shape. Accordingly it is possible to lower the voltage. The both electrodes are separated electrically and mechanically using an insulated material and in an ozone generation portion the both electrodes are separated completely.
Abstract:
An ozone generator has a dielectric element, first and second opposed end cap members and a gas passageway positioned between a high voltage electrode and a ground plane and positioned internal of the dielectric element, and at least one securring member extending between the opposed end caps whereby the securring member holds the end caps in place.
Abstract:
Disclosed is an apparatus for generating low-temp plasma at atmospheric pressure, comprising: a couple of electrodes facing each other at a distance, one of them being connected to a power supply, the other being grounded; a couple of dielectrics with a thickness of 25 &mgr;m-10 mm, positioned on the facing surfaces of the electrodes in such a way as to face each other, one of them having at least one discharge gap therein; and a conductor electrode having at least one tip positioned within the discharge gap, in which an electric field is applied at an intensity of 1-100 KV/cm through the power supply across the electrodes by use of a pulse direct current or an alternating current in a frequency bandwidth of 50 Hz-10 GHz while a reaction gas is fed between the electrodes, so as to induce a hollow cathode discharge, a capillary discharge or the high accumulation of charges from the discharge gap.
Abstract:
A system and method for treating cooling tower water. The system and method utilizes an apparatus for generating ozone and other atoms and molecules resulting from the bombardment of a feed gas with electrons has, preferably, a first electrode positioned within a channel in a second electrode. The first electrode is a substantially sealed tube made of dielectric material, having at least one electron gun positioned proximate an end thereof for firing electrons into the first electrode. In electrical communication with the electron gun is a rod, maintained in a tube also made of dielectric material, which acts to maintain a constant energy level through the length of the rod and thus the length of the electrode. Within the first electrode is an inert gas which, upon the firing of the electron gun, is formed into a plasma. When a feed gas (generally air) is passed between the first and second electrodes, the electrons and plasma cause the formation of ozone and other atoms and molecules in the feed gas, which products have beneficial uses in the treatment of water and air for different purposes. The treated feed gas is then injected, preferably with a venturi type of injector, into the water to be treated. Preferably, the water is then centrifuged before introduction in the cooling tower system.