Abstract:
A capacitive sensor includes a semiconductor substrate, a fixed electrode serving as a first electrode formed on a surface of or in the semiconductor substrate, a structure formed on the semiconductor substrate to have a vibratable second electrode that is formed to be spaced from and opposed to the semiconductor substrate and from the fixed electrode serving as the first electrode, a sealing member serving as a first sealing member formed on the semiconductor substrate to be spaced from the structure, to cover the structure, and to have a through hole serving as a first through hole, and a movable electrode serving as a vibratable third electrode formed on the sealing member to block up the through hole, and to be spaced from and opposed to the movable electrode.
Abstract:
A physical quantity detection circuit (12) is used for a physical quantity sensor (10) that outputs a sensor signal according to a physical quantity given externally. In the physical quantity detection circuit (12), an analog-to-digital converter (104) converts an analog sensor signal (Ssnc) to a digital sensor signal (Dsnc). A digital filter (100) attenuates a frequency component of the digital sensor signal (Dsnc) that is higher than a predetermined cutoff frequency. A multiplier (106) multiplies a digital sensor signal (Dps) having passed the digital filter (100) by a digital detection signal (Ddet) to detect a digital physical quantity signal (Dphy).
Abstract:
A method for fabricating the MEMS device includes providing a substrate. Then, a structural dielectric layer is formed over the substrate at a first side, wherein a diaphragm is embedded in the structural dielectric layer. The substrate is patterned from a second side to form a cavity in corresponding to the diaphragm and a plurality of venting holes in the substrate. An isotropic etching process is performed from the first side and the second side of the substrate via vent holes to remove a dielectric portion of the structural dielectric layer for exposing a central portion of the diaphragm while an end portion is held by a residue portion of the structural dielectric layer.
Abstract:
An element structure has a polyimide resin applied on a surface of a first substrate to a uniform thickness, and is subsequently heated to form a semi-cured polyimide layer. The polyimide layer is then cured to form a cured first polyimide layer. A polyimide resin is applied on a surface of a second substrate to a uniform thickness, and is subsequently heated to form a semi-cured polyimide layer. The polyimide layer is then cured to form a cured second polyimide layer. The cured first and second polyimide layers are pressed on each other and heated to a bonding temperature, thereby joining the polyimide layers together. Thus, the first substrate and the second substrate are combined with the polyimide layer being the bonded structure of the polyimide layers therebetween.
Abstract:
An acceleration sensor includes a semiconductor substrate, a first layer formed on the substrate, a first aperture within the first layer, and a beam coupled at a first end to the substrate and suspended above the first layer for a portion of the length thereof. The beam includes a first boss coupled to a lower surface thereof and suspended within the first aperture, and a second boss coupled to an upper surface of the second end of the beam. A second layer is positioned on the first layer over the beam and includes a second aperture within which the second boss is suspended by the beam. Contact surfaces are positioned within the apertures such that acceleration of the substrate exceeding a selected threshold in either direction along a selected axis will cause the beam to flex counter to the direction of acceleration and make contact through one of the bosses with one of the contact surfaces.
Abstract:
An acceleration sensor includes: a sensitive element having a vibrating beam, base ends located at both ends of the vibrating beam, and excitation electrodes which are formed on a surface of the vibrating beam; a supporting section connected to each of the base ends in order to support the sensitive element; a connecting section which is provided between one of the base ends and the supporting section so as to extend from the one base end in the opposite direction to the one base end on the same axis as the vibrating beam and which has a thin section formed along the longitudinal direction of the vibrating beam; and a spindle section which is disposed at both sides of the sensitive element in the width direction in a state of being connected to the one base end and extends toward the other base end side along the longitudinal direction.
Abstract:
A triaxial acceleration sensor which has a structure including a cover joined to a substrate including a mechanically operable functional unit to be sealed, is adapted in such a way that the joined state can be reliably obtained so as to not interfere with a displacement of the functional unit. A sealing frame is made of a heated polyimide on a periphery of an upper main surface of a substrate provided with a functional unit, and a sealing layer made of a polyimide is formed over an entire lower main surface of a cover. For integrating the substrate and the cover so as to seal the functional unit, the sealing frame and the sealing layer are joined to each other by heating and pressurizing the sealing frame and the sealing layer at a temperature that is about 50° C. to about 150° C. higher than a glass transition temperature of the polyimide while bringing the sealing frame and the sealing layer into contact with each other. In this case, a recess is formed in the vicinity of a portion of the sealing layer to be brought into contact with the sealing frame so that a bump, generated from the sealing layer which is deformed in the joining step, is prevented from protruding toward the functional unit.
Abstract:
Microelectromechanical (MEMS) accelerometer and acceleration sensing methods. A MEMS accelerometer includes a proof mass suspended by at least one hinge type flexure, at least one planar coil located on the proof mass, and at least one magnet positioned such that a magnetic flux field passes through the at least one planar coil at an angle between approximately 30 degrees and approximately 60 degrees relative to the coil plane. In an example embodiment, the angle is approximately 45 degrees. The at least one magnet may include a first annular magnet positioned on a first side of the poof mass and a second annular magnet positioned on a second side of the proof mass. A method includes sensing a capacitance of a pickoff in the MEMS accelerometer and rebalancing the MEMS accelerometer by sending a current through the planar coil.
Abstract:
A vibratory sensor includes a resonator element including (i) a first base portion and a second base portion, each of the first and the second base portions having an upper main surface and a lower main surface, (ii) a resonating arm extended in a beam shape between the first and the second base portions to be vibrated at a predetermined resonance frequency, (iii) a first narrow portion formed by reducing a width of a portion extended from the first base portion to be smaller than a width of the first base portion in a direction orthogonal to an extending direction of the resonating arm, (iv) a second narrow portion formed by reducing a width of a portion extended from the second base portion to be smaller than a width of the second base portion in the direction orthogonal to the extending direction of the resonating arm, (v) a first support portion extended from the first narrow portion in a direction opposite to the first base portion, and (vi) a second support portion extended from the second narrow portion in a direction opposite to the second base portion, a length ratio of the first narrow portion versus the first base portion in the extending direction of the resonating arm and a length ratio of the second narrow portion versus the second base portion in the extending direction of the resonating arm being in a range of 50 to 200% inclusive; and a base supporting the resonator element, the base being connected to one of upper and lower main surfaces of each of the first and the second support portions included in the resonator element.
Abstract:
A weight of an inertial sensor if formed from a plurality of divided weights, and the divided weights are connected to each other by elastically deformable beams. A movable range and a mass of each of the divided weights and a rigidity of each of the beams are adjusted and a plurality of deformation modes having different sensitivity ranges with respect to the acceleration are used in combination. By this means, it is possible to improve a detecting sensitivity of an acceleration and widen an acceleration response range.