Abstract:
A bridge concentric continuously adjustable water regulator comprising: an outer tube; an adjusting sleeve disposed in the outer tube; a concentric valve connected below the adjusting sleeve, with a center of circle of the concentric valve being concentric to the outer tube; a water outlet which runs through a side wall of the outer tube and is connected to the concentric valve; a lower sealed section which is disposed in the outer tube and is below the concentric valve and the water outlet; and a bridge passage disposed in the side wall of the outer tube and outside the concentric valve and the lower sealed section.
Abstract:
A method for enhancing oil recovery in huff-puff oil production of tight oil from a fractured horizontal well by an optimized reservoir pressure, washing the horizontal well by sand flushing, injecting water into the reservoir to increase the stratum pressure around the horizontal well, and stopping the water injection when the pressure retention level is 100% at end stage of the water injection period. The method for enhancing oil recovery in huff-puff oil production of tight oil from a fractured horizontal well enables the crude oil in the pores of the matrix in the tight reservoir rock developed by the natural fracture to be further recovered. Comprehensive utilization of stratum energy boost, and imbibition replacement between the injected water and the reservoir crude oil improves the single-well production to enhance the oil recovery of a tight oil reservoir.
Abstract:
The present application provides a method for characterizing reservoir micro pore structures, in particular structures smaller than 50 nm and a system therefore. The method can include fabricating a reservoir sheet; fabricating a reservoir sheet electrode using the reservoir sheet; depositing crystal substance in inner pores of the reservoir sheet of the reservoir sheet electrode using chemical deposition; obtaining the crystal substance by removing rock portions of the reservoir sheet in which the crystal substance is deposited; and scanning the shapes of the obtained crystal substance, the result of the scanning being the reservoir micro pore structure.
Abstract:
The present invention provides a stratigraphic correlation method and apparatus based on uncertainty. The stratigraphic correlation method comprises: determining a plurality of possible correlation positions in a well with uncertain layered position in a profile, in a stratigraphic correlation process; assigning a qualitative or quantitative certainty value to the plurality of correlation positions; and storing and displaying the plurality of correlation positions and certainty values thereof as different layered solutions on the profile, respectively. By setting a plurality of position solutions for a layer in the present invention, all possibilities of the layered position judged by the geological personnel can be recorded as references for the subsequent correlation of other profiles, the closing of the whole layered solution, and the quality control.
Abstract:
The present invention relates to a supported polyolefin catalyst and its preparation and application. Its main catalyst is composed of a support and a transition metal halide; the support is composed of a magnesium halide compound, a silicon halide compound, an alcohol compound having 5 carbon atoms or less, an alcohol compound having carbon atom number of 6-20 in a molar ratio of 1:(0.1 to 20):(0.1 to 5):(0.01 to 10); the molar ratio of the magnesium halide compound and the transition metal halide is 1:(0.1 to 30); during the preparation process of the main catalyst, an organic alcohol ether compound is added, the mass ratio of the magnesium halide compound and the organic alcohol ether compound is 100:(0.1 to 20); and the molar ratio of the transition metal halide in the main catalyst and the co-catalyst is 1:(30 to 500). The catalyst particles of the present invention have a good shape and a uniform particle size distribution, with polymer obtained under catalysis using it having a low content of fine powders and a high bulk density, thus suitable for olefin slurry polymerization process, a gas phase polymerization process or a combined polymerization process.
Abstract:
Disclosed are an intelligent test system and method for a multi-segment fractured horizontal well. The intelligent test method for a multi-segment fractured horizontal well comprises: step A: placing a test tubular column into an underground horizontal section; step B: setting a pressure building packer and a hanging packer by means of pressurization after the test tubular column is placed into an underground designed position; step C: breaking a hydraulic release connector to separate the hydraulic release connector from a seal pipe; step D: pulling out a first oil pipe, and reserving the tubular column comprising the seal pipe and located on the downstream part of the seal pipe in a horizontal well; and step E: placing a production tubular column or a communications tubular column into a vertical section of the horizontal well.
Abstract:
The present invention relates to preparation and application of an olefin polymerization catalyst. The main catalyst is composed of a carrier, a transition metal halide, and an organic alcohol compound. The transition metal halide is obtained by in-situ reaction between titanate and silicon halide. The molar ratio of the carrier to the transition metal halide to the organic alcohol compound is 1 to 0.01-20 to 0.1-6. The molar ratio of the titanate to the silicon halide is 1 to 0.5-2. The co-catalyst is an organo-aluminum compound. The molar ratio of the transition metal halide in the main catalyst to the co-catalyst is 1 to 30-500. Particles of the catalyst are good in morphology and are in a spherical shape. The catalyst has high activity and the polymer obtained by using the catalyst has a high molecular weight. The catalyst is applicable to a slurry method, a vapor phase polymerization process, or a combined polymerization process. The preparation method thereof is simple, has low requirements on devices, and produces little pollution on the environment.
Abstract:
The present invention relates to a crown-shaped separation device for separating oil and water in a well. Separator joints are sleeved on a central tube, and a separator is arranged between adjacent separator joints. Settlement cups are sleeved on the central tube, and two adjacent settlement cups are inserted together. A multi-rib separating bowl is embedded in the settlement cup. The settlement cup is crown shape. The bottom of the settlement cup is formed with multiple ribs. An angle is formed between the convex rib of the bottom of the settlement cup and the horizontal line. The top edge of the settlement cup is sawtooth shape corresponding to the shape of the cup bottom. An annular space is formed between the cup base of the settlement cup and the central tube. The central tube corresponding to the annular space is provided with a fluid inlet. The shape of the multi-rib separating bowl is identical to that of the bottom of settlement cup, and the multi-rib separating bowl is provided with a fluid passage. The downhole device solves the effective separation of oil and water.
Abstract:
Provided is a lubricant composition for a full transmission system, comprising: (A) at least an ashless dispersant; (B) at least a friction modifier; (C) at least a phosphorus-containing antiwear agent; (D) at least an antirust additive; (E) at least a sulfur-containing extreme-pressure additive; (F) at least a metal deactivation additive; (G) at least a viscosity index improver; (H) at least a pour-point depressant; and (I) at least a highly refined mineral oil with high viscosity index, or polyolefin synthetic oil, or ester synthetic oil, or any combination of the above components. The lubricant composition has excellent cleaning dispersity, frictional characteristic, antirust and anti-corrosive properties and extreme pressure abrasion resistance, meets US force standard MIL-PRF-2105E, and can be used for lubrication in various vehicle transmission systems.
Abstract:
The present application provides a main catalyst for preparing poly(4-methyl-1-pentene) and a use of the main catalyst. The main catalyst for preparing poly(4-methyl-1-pentene) of the present application has a structure represented by Formula I, in which R1 is selected from hydrogen or phenyl, and when R1 is selected from phenyl, R1 is fused with a naphthalene ring in the Formula I to form an anthracene ring; and R2 is selected from methyl or isopropyl. When the main catalyst of the present application is used in a catalytic system to catalyze homopolymerization of 4-methyl-1-pentene, the catalyst exhibits high catalytic activity, and the prepared poly(4-methyl-1-pentene) has high molecular weight, narrow molecular weight distribution and high isotacticity, and thus has broad market application prospects.