Abstract:
A method of offload selection for a UE to select between 3GPP RAT and WLAN cell is provided. The UE receives configuration information that applies to selecting WLAN or 3GPP radio access technology (RAT). The UE determines if the UE may perform WLAN offload by evaluating 3GPP radio access network (RAN) conditions where at least one RAN condition is related to a radio signal strength or a radio signal quality in 3GPP RAT. The UE then determines if there is at least one suitable WLAN cell by evaluating WLAN conditions. The UE also determines if there is candidate traffic for WLAN offload. Finally, the UE steers the determined traffic to WLAN if the UE may perform WLAN offload and if there is at least one suitable WLAN cell. Otherwise, the UE steers the determined traffic to 3GPP RAT.
Abstract:
A novel and efficient connected mode cell reselection procedure is proposed to improve the mobility performance for user equipments (UEs) configured with extended connected mode Discontinuous Reception (DRX) cycle in LTE systems. A UE-centric mobility mechanism with which a UE performs cell reselection in RRC connected mode is proposed. The UE is allowed to select a target cell without handover signaling in the source cell and when needed to initiate signaling with the target cell, for which signal quality is much better. In this way, handover failures due to failed signaling in the source cell can be avoided. More specifically, the proposed mobility mechanism reduces signaling overhead and is inherently robust towards different DRX cycle settings, i.e., longer DRX cycles do not cause more failures, or more overhead, or more battery consumption.
Abstract:
A UE establishes an RRC connection with a base station for an application in a mobile communication network. The UE acquires a barring indication that indicates whether scheduling request (SR) barring is applicable for the application. The UE then acquires prioritized barring parameters for SR barring if applicable. The prioritized barring parameters is associated with a priority of the application. Finally, the UE determines whether to send a scheduling request for an arrived packet based on the prioritized barring parameters. In one embodiment, the application is associated with a quality of service (QoS) class indicator (QCI), and the priority of the application is based on the QCI. The prioritized SR barring mechanism based on QCI can be applied for RRC Connected mode with finer granularity.
Abstract:
Methods to manage multiple component carriers (CCs) efficiently in a mobile network with carrier aggregation (CA) enabled are proposed. For CC activation/deactivation, a single LCID value is used to represent both activation and deactivation command. A single command with multiple instructions is provided to activate and/or deactivate multiple CCs. In addition, unnecessary re-activation or re-inactivation of a CC is prevented, and explicit feedback for activation/deactivation is considered. For scheduling mechanism, a novel buffer status reporting (BSR) procedure is provided, where only one BSR is calculated after preparing all the transport blocks (TB) within one transmission time interval (TTI). Novel power headroom reporting (PHR) format and trigger are also provided. For DL-UL linking, various linking types are created based on whether there is carrier indicator field (CIF) in DL grant or UL grant. The various linking types are used in different applications to improve scheduling flexibility and load balancing.
Abstract:
A method for performing uplink traffic shaping of an electronic device and an associated apparatus are provided, where the method includes the steps of: monitoring at least one modulator-demodulator (modem) state of a radio modem of the electronic device; and according to the at least one modem state and according to at least one uplink traffic gating strategy, dynamically controlling whether to allow uplink traffic to pass through the radio modem, and more particularly, in a situation an alarm-aware uplink traffic gating strategy is involved, determining whether a time interval between a wake-up type alarm trigger and a last time point when uplink traffic is previously allowed because of another alarm trigger reaches a predetermined alarm-triggered gate open threshold; and controlling whether to allow uplink traffic to pass through the radio modem according to whether the time interval reaches the predetermined alarm-triggered gate open threshold.
Abstract:
A method of cell reselection enhancement is proposed. A UE obtains parameters for extended cell reselection (ECR) in a mobile communication network. The UE goes to sleep and then wakes up periodically to monitor a paging channel. The UE either applies a normal paging cycle having a normal paging cycle length or applies a power-saving paging cycle having a very long paging cycle length. The UE performs cell selection if normal paging cycle is applied. The UE performs cell reselection based on the ECR parameters if the power-saving paging cycle is applied, and if the ECR parameters are still valid based on a list of conditions. In one novel aspect, the network provides the ECR parameters for a wider area for the UE such that the UE can still use cell reselection after waking up from a very long sleep to reduce power consumption.
Abstract:
Various schemes are provided to improve SR resource utilization by adapting SR resource allocation to traffic pattern. In a first Scheme, SR resource allocation is configured more accurately. In one example, UE provides assistant information for eNB to determine or adjust SR configuration based on the received assistant information. In a second Scheme, multiple SR periods are configured and adapted to traffic pattern. In one example, eNB configures a set of SR resources with multiple SR periods, and UE applies different SR periods based on predefined events. Unused SR resources could be recycled by eNB for PUSCH data transmission. In a third Scheme, multiple SR allocations are configured and adapted to concerned applications. In one example, eNB configures multiple sets of SR resources adapted to predefined applications, and UE applies SR configurations based on corresponding applications. The additional SR configurations could be activated and/or deactivated.
Abstract:
A power control method to mitigate in-device coexistence (IDC) interference is provided. A wireless communication device (UE) is equipped with a first LTE radio module and a second co-located WiFi/BT/GSNN radio module. Upon detecting coexistence or IDC interference, the UE applies power control method to mitigate the interference. In a first embodiment, the LTE radio module adjusts its power parameters locally without informing the serving eNB. In a second embodiment, the LTE radio module adjusts its power parameters and implicit informs the eNB through existing PHR reporting. In a third embodiment, the LTE radio module changes its power or power class and explicitly informs the eNB through UE capability or new RRC message or MAC CE. Power control can be used as a low cost and lightweight solution before applying other heavyweight solutions that either require more resource or control overhead, or have higher impact on throughput.
Abstract:
Various schemes are provided to improve SR resource utilization by adapting SR resource allocation to traffic pattern. In a first Scheme, SR resource allocation is configured more accurately. In one example, UE provides assistant information for eNB to determine or adjust SR configuration based on the received assistant information. In a second Scheme, multiple SR periods are configured and adapted to traffic pattern. In one example, eNB configures a set of SR resources with multiple SR periods, and UE applies different SR periods based on predefined events. Unused SR resources could be recycled by eNB for PUSCH data transmission. In a third Scheme, multiple SR allocations are configured and adapted to concerned applications. In one example, eNB configures multiple sets of SR resources adapted to predefined applications, and UE applies SR configurations based on corresponding applications. The additional SR configurations could be activated and/or deactivated.
Abstract:
A method of user equipment (UE) providing speed information to network is provided. The method supports obtaining speed information of the UE, detecting a trigger event and providing the speed information to the network by one or more predefined means. The speed information is taken from the group consisting of a physical speed, a physical speed mapped on a pre-defined speed group, and a virtual speed. The virtual speed comprises a cell change count or a number cells that the UE has requested RRC connection during a certain period. The UE can send the speed information to an eNB via RRC connection establishment, RRC connection re-establishment, a new IE in RRC measure report or a new RRC message.