Abstract:
A catalyst substrate may include a ceramic base body including first and second ends, the second end being opposite to the first end, and the ceramic base body being provided with a plurality of cells each extending between the first and second ends; and a plurality of metal particles or metal fragments introduced into one or more internal spaces of one or more selected cells in the plurality of cells. Each of the plurality of metal particles or metal fragments has a size equal to or less than an opening width of the cell. The plurality of metal particles or metal fragments is configured to generate heat in accordance with varying magnetic field.
Abstract:
The exhaust line comprises an injection segment including at least one cup having a large upstream face directly sprayed with the exhaust gases and dividing a circulation passage into an upstream space and a downstream space. The injection segment comprises at least one circumferential conduit fluidically connecting the upstream space to the downstream space. The cup defines at least one injection channel and at least one guiding area laid out so as to guide as far as said injection channel a portion of the exhaust gases spraying the large upstream face. An injection device includes a reagent injector that is oriented to inject the reagent substantially with a co-current or counter-current of the exhaust gases in the injection channel, with the latter extending from the injector as far as the inlet of the conduit.
Abstract:
A method for manufacturing an ammonia storage cartridge includes a step for supplying a material by ammonia absorption or adsorption by absorbent salts, a step for producing an intermediate element, including compacting the material to form the intermediate element, a step for stacking at least two intermediate elements in a shell of the cartridge, and a step for compressing the stack of intermediate elements in the shell.
Abstract:
An ammonia generating device for treating exhaust gases of internal combustion engines, notably of automobile vehicles, includes a reservoir having a body capable of releasing ammonia by desorption and a heating device positioned inside the reservoir to heat the body in the reservoir. The heating device comprises a heat generating element that has an elongated form. The heating device further includes at least one heat transfer feature laid out along an axial direction of the heat generating element and extending in a direction radial to the heat generating element.
Abstract:
An ammonia generating device is delimited by an outer casing that includes a main reservoir and a secondary reservoir. The main reservoir is capable of reloading with ammonia the body in the secondary reservoir. A heater is capable of heating the bodies in each reservoir. A connector connects the main reservoir to the secondary reservoir. The heater comprises first and second heating devices respectively installed inside the main reservoir and the secondary reservoir and operating independently. The main reservoir is thermally decoupled from the secondary reservoir to generate a temperature gradient between both reservoirs.
Abstract:
An exhaust line of a motor vehicle includes an upstream monolith and a downstream monolith for treating exhaust gases passing along the exhaust line. The upstream and downstream monoliths are positioned in series. An injection portion is positioned between an upstream face defined by the upstream monolith and a downstream face defined by the downstream monolith and includes a duct through which a stream of exhaust gas flows. The duct extends from the upstream face to the downstream face and has a central line of a set length between the faces. A reagent injector is mounted on the injection portion and is designed to inject reagent in gaseous form into the injection portion. At least one cup is positioned inside the duct in the path of the exhaust gas stream so that a mean path of the exhaust gas stream line is at least 20% longer than the set length.
Abstract:
A valve comprises a support including an exhaust gas passage opening, a plug able to move by tilting between a plugging position and a release position of the passage opening, and an elastic strip for returning the plug to its plugging position. The elastic strip has a first end fastened to the support and a second end bearing on the plug. The second end is able to slide on the plug between a first position, in which the plug is in the plugging position, and a second position, in which the plug is in the release position. The plug includes a stop forming a hard spot that cooperates with the second end of the elastic strip when the elastic strip is in the first position, so that this stop forms an obstacle for movement of the second end of the elastic strip from the first position to the second position.
Abstract:
A Motor vehicle exhaust line includesa hot pipe, anda cold pipe for exhaust gases. Amechanical decoupling element connects a downstream end of the hot pipe to an upstream end of the cold pipe. The exhaust line also includes a nitrogen oxide treatmentdevice andan injector intended to reinject a reagent into, or to produce a reagent in the exhaust line upstream of the nitrogen oxide treatment device. Theexhaust line includes a mixer intended to mix the exhaust gases and the reagent injected or produced by the injector. The mixer is positioned upstream of the nitrogen oxide treatment device. The nitrogen oxide treatment device is disposed in the cold pipe downstream of the mechanical decoupling element. The injector and the mixer form an assembly connected directly to the mechanical decoupling element.
Abstract:
A device for removing pollutants from exhaust gases of a combustion engine, includes a longitudinal outer casing (23) defining a passage through which the exhaust gases flow, and first and second pollution-removal members (18, 20) mounted in series in the passage. The device includes a holding sleeve (38) holding the first pollution-removal member (18) in place and interposed between the first pollution-removal member (18) and the outer casing (23) and running longitudinally at least over most of the length of the first pollution-removal member (18), the holding sleeve (38) being guided in the external casing (23) and forming, between the first and second pollution-removal members (18, 20) a longitudinal thrust surface (40) against which the first pollution-removal member (18) bears.
Abstract:
A method for manufacturing a member for purifying exhaust gas for an automobile exhaust line, including an enclosure, an exhaust gas purification unit arranged in the enclosure, and at least one element for supporting the unit. The method includes the following steps: obtaining a first quantity representative of a mass (Mb) of the exhaust gas purification unit; using at least the first quantity obtained, determining an installation density (dmounted) of the or each support element; determining at least one diameter (Denclosure) of the enclosure as a function of the determined installation density (dmounted) ; assembling the enclosure, the support element(s) and the gas purification unit, so as to obtain the diameter that was determined for the enclosure and the installation density (dmounted) that was determined for the support element(s).