Abstract:
A roundness measuring apparatus, which has a small space required for installation and of which measurement error due to a temperature change is small, is disclosed. The roundness measuring apparatus includes: a base; a turn-table which is fixed to the base and rotates a work placed on the turn-table; a two-dimensional moving mechanism provided at the base so as to move a holder holding part in parallel to a measurement plane including a rotation axis of the turn-table and a measuring point of the work; a detector holder attached to the holder holding part; and a detector attached to the detector holder so that a probe can be displaced on the measurement plane.
Abstract:
A two way roundness device can be configured as a device in which a tool, such as an indicator rotates or as a device in which the part to be measured or cut rotates. This ability to alternate between these two configurations is enabled by a combination of a rotating spindle assembly and a two-axis stage that can be oriented, in use, with the two-axis stage under the spindle assembly or with the two-axis stage on top of the spindle assembly.
Abstract:
A method and apparatus for measuring a part with a contact probe mounted on a coordinate positioning machine. The method includes measuring a plurality of points on the part when both the part and contact probe are moving continuously between different positions within the coordinate positioning machine. The probe moves, relative to the part, along a scan path such that substantially coincident points that are closely located together along a curve or surface being measured are measured at relatively far apart positions in the machine and at relatively far apart positions along the scan path.
Abstract:
A method of calibrating a surface texture measurement device includes obtaining Y-axis shape measurement data and a maximum diameter portion to obtain upper and lower maximum diameter portions of a reference sphere from Y-axis upper and lower shape data obtained by relatively moving in the Y-axis direction while a downward and an upward styluses are in contact with an upper and a lower surfaces, respectively, of the reference sphere; obtaining X-axis shape measurement data to obtain X-axis upper and lower shape data of the reference sphere by relatively moving in the X-axis direction while the downward stylus is in contact with the upper diameter portion and the upward stylus with the lower diameter portion of the reference sphere; and calculating offset amounts Δx and Δz of the upward and downward styluses from center coordinates O3 and O4 obtained from the shape data.
Abstract:
A surface property measuring apparatus includes a control unit, configured to control operations of a roughness measuring instrument and a relative moving mechanism, including: a measuring force command module configured to output a measuring command; and a measuring force control module configured to control the direction and magnitude of the measuring force, wherein the measuring force control module instructs a measuring force application unit of the roughness measuring instrument to generate therein the measuring force whose magnitude and direction are designated by the measuring force command when a displacement speed of a measuring arm is equal to or slower than a predetermined threshold, and the measuring force control module instructs the measuring force application unit to generate therein a force in a direction in which the distal end of the measuring arm is raised upwards when the displacement speed of the measuring arm exceeds the predetermined threshold.
Abstract:
A system includes at least one body, a link for suspending the body for movement with gravity from a first elevation position to a second elevation position, and an electrical energy generator coupled with the body through the link to drive the generator to generate electricity upon movement of the body with gravity from the first to the second elevation position. The at least one body has a mass of at least approximately 100 tonnes; the first and the second elevation positions define a distance therebetween of at least approximately 200 meters; and/or the system further includes an operator configured to operate the link to controllably move the at least one body against gravity from the second to the first elevation position to increase a gravitational potential energy of the at least one body, and to maintain the gravitational potential energy of the at least one body.
Abstract:
A profile measuring instrument usable to perform a rotary scanning measurement and a linear scanning measurement on a workpiece in the form of a revolution solid, includes: a turntable on which the workpiece is mounted, the turntable being rotatable around a predetermined rotation axis; a rotary scanning measurement unit being adapted to measure a displacement of a surface of the workpiece mounted on the turntable; a linear scanning measurement unit being adapted to measure a profile of the surface of the workpiece mounted on the turntable along a predetermined measurement axis; and an aligning mechanism being adapted to relatively move the linear scanning measurement unit and the turntable in a direction intersecting with the measurement axis. The linear scanning measurement unit and the turntable are adjusted to relative positions at which the measurement axis passes through the rotation axis.
Abstract:
A surface texture measuring device includes a rotation driving device configured to rotate a measured substance, a roughness detector including a stylus provided displaceably at a tip of a detector main body and at least one skid provided at the tip of the detector main body and in the proximity of the stylus and outputting displacement of the stylus based on the skid as an electric signal, and a detector driving device configured to drive a detector holder. The detector holder includes a guide member driven by the detector driving device, a slide member configured to hold the roughness detector and provided slidably in a displacement direction of the stylus to the guide member, and an urging member configured to urge the slide member so that the skid always comes in contact with the measurement face of the measured substance.
Abstract:
A detector includes a stylus, a holding portion that holds a proximal end portion of the stylus, a body portion that supports the holding portion rotatably about a rotational axis, and a sensor that detects a rotational displacement of the holding portion. The holding portion includes an abutting member, on which the proximal end portion of the stylus abuts, and a plate spring that biases the proximal end portion of the stylus against the abutting member. The abutting member includes a groove portion on which the proximal end portion of the stylus abuts, and a semispherical portion that extends toward the plate spring, compared with a bottom of the groove portion. The stylus includes a proximal end inclined portion at the proximal end portion of the stylus. The proximal end inclined portion is inclined toward the plate spring, with a decreasing distance from the rotational axis.
Abstract:
An apparatus for revealing the geometry of operative cylinders, in particular during the grinding operation of the same, includes a pair of movable clamps which can be moved away from and towards each other with respect to a fixed intermediate structure, the clamps having tilted surfaces in opposite directions to each other according to a swallowtail arrangement with respect to a cylinder being measured, positioned between them and between a surface of the fixed intermediate structure, the surfaces of the movable clamps and the surface of the fixed intermediate structure always being kept in contact with the cylinder, whether still or rotating, wherein the fixed structure also has, in its interior, parts of a group which interact with each other to correlate the movement of the clamps.