Abstract:
A ship comprising a hull having a transom and a bottom, and an azimuthing propulsion unit arranged to the bottom of the ship hull, which azimuthing propulsion unit comprises a propeller. The azimuthing propulsion unit comprises an exposed operation mode in which the propeller sets, behind the transom of the hull and that the azimuthing propulsion unit is rotatable and comprises a protected position mode in which the azimuthing propulsion unit stays below the hull of the ship.
Abstract:
Estimating junction temperature in a power semiconductor includes monitoring electrical current direction so as to determine which of a first and a second power semiconductor is in an on-state, and sensing a voltage drop across the one of the power semiconductors. Voltage drop may be correlated with temperature according to a gain dependent upon a level of the electrical current.
Abstract:
A rotation mechanism for a rotary switch and a method of operating a rotary switch are provided. The rotation mechanism includes a mechanism shaft for switching the switch between open and closed positions of the switch, a crank rotationally connected to the mechanism shaft, a spring connected to the crank, where the spring has a dead point between the open and closed positions of the switch, and a force transmission roll rotationally connected to the crank. The mechanism shaft, crank and force transmission roll have a common axis of rotation. There is a predetermined rotational free-play between the rotation of the mechanism shaft and the crank, and a predetermined rotational free-play between the rotation of the crank and the force transmission roll.
Abstract:
A method and arrangement for operating a pump system are disclosed, the pump system including a pump arranged to be rotated with an AC motor, an inverter, the output of which is electrically connected to the AC motor, and a photovoltaic panel system electrically connected to feed DC power to the inverter. The method can include setting a voltage limit, and determining continuously voltage obtained from the photovoltaic panel system. When the determined voltage of the photovoltaic panel system is below the set voltage limit, frequency of the inverter can be controlled such that the ratio between output voltage of the inverter and the output frequency is substantially constant. When the determined voltage of the photovoltaic panel system exceeds the voltage limit, the inverter frequency can be controlled for keeping voltage of the photovoltaic panel system substantially at the voltage limit.
Abstract:
Exemplary embodiments of the present disclosure are directed to an apparatus including pipes having internal longitudinal walls dividing the pipes into channels, a first and a second connecting part for providing a flow path between the channels of the pipes, a first heat transfer element having a first base plate with a first surface for receiving a heat load from one or more electric components and for transferring the heat load to a fluid, and a second heat transfer element. In order to obtain an efficient apparatus at least one first pipe that is at a location of an electric component is at least partly embedded in the first base plate via a second surface of the first base plate, while the pipes which are not at the location of an electric component are not embedded in the first base plate.
Abstract:
A rotary switch housing (100), comprising a bottom wall (102) for mounting of the switch housing (100) to a mounting base, and side walls (104, 106) extending from the bottom wall (102), the switch housing further comprising an arc chamber (120) for extinguishing an electric arc, and a gas exhaust channel (130) for exhausting gas developed in the arc chamber (120) out of the housing (100). The gas exhaust channel (130) comprises a guiding portion (130A), which is substantially parallel to a side wall (106) of the housing (100) for leading the gases to a direction away from the bottom wall (102) of the housing (100).