Abstract:
A quantum well is formed for a deep well III-V semiconductor device using double pass patterning. In one example, the well is formed by forming a first photolithography pattern over terminals on a material stack, etching a well between the terminals using the first photolithography patterning, removing the first photolithography pattern, forming a second photolithography pattern over the terminals and at least a portion of the well, deepening the well between the terminals by etching using the second photolithography pattern, removing the second photolithography pattern, and finishing the terminals and the well to form a device on the material stack.
Abstract:
A group III chalcogenide layer for interfacing a high-k dielectric to a III-V semiconductor surface and methods of forming the same. A III-V QWFET includes a gate stack which comprises a high-K gate dielectric layer disposed on an interfacial layer comprising a group III chalcogenide. In an embodiment, a III-V semiconductor surface comprising a native oxide is sequentially exposed to TMA and H2S provided in an ALD process to remove substantially all the native oxide and form an Al2S3 layer on the semiconductor surface.
Abstract translation:用于将高k电介质与III-V半导体表面接合的III族硫属化物层及其形成方法。 III-V QWFET包括栅极堆叠,其包括设置在包含III族硫族化物的界面层上的高K栅极电介质层。 在一个实施方案中,包含天然氧化物的III-V半导体表面依次暴露于在ALD工艺中提供的TMA和H 2 S以去除基本上所有的天然氧化物并在半导体表面上形成Al 2 S 3层。
Abstract:
Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
Abstract:
Non-silicon metal-insulator-semiconductor (MIS) devices and methods of forming the same. The non-silicon MIS device includes a gate dielectric stack which comprises at least two layers of non-native oxide or nitride material. The first material layer of the gate dielectric forms an interface with the non-silicon semiconductor surface and has a lower dielectric constant than a second material layer of the gate dielectric. In an embodiment, a dual layer including a first metal silicate layer and a second oxide layer provides both a good quality oxide-semiconductor interface and a high effective gate dielectric constant.
Abstract:
Embodiments of the present disclosure describe techniques and configurations to impart strain to integrated circuit devices such as horizontal field effect transistors. An integrated circuit device includes a semiconductor substrate, a first barrier layer coupled with the semiconductor substrate, a quantum well channel coupled to the first barrier layer, the quantum well channel comprising a first material having a first lattice constant, and a source structure coupled to the quantum well channel, the source structure comprising a second material having a second lattice constant, wherein the second lattice constant is different than the first lattice constant to impart a strain on the quantum well channel. Other embodiments may be described and/or claimed.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
A group III-V material device has multiple spacer regions above a quantum well channel region. A high-k value gate dielectric is formed on an InGaAs spacer above the quantum well channel region while there are InAlAs spacer regions under contact regions.
Abstract:
A quantum well (QW) layer is provided in a semiconductive device. The QW layer is covered with a composite spacer above QW layer. The composite spacer includes an InP spacer first layer and an InAlAs spacer second layer above and on the InP spacer first layer. The semiconductive device includes InGaAs bottom and top barrier layers respectively below and above the QW layer. The semiconductive device also includes a high-k gate dielectric layer that sits on the InP spacer first layer in a gate recess. A process of forming the QW layer includes using an off-cut semiconductive substrate.
Abstract:
A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
Abstract:
A quantum well (QW) layer is provided in a semiconductive device. The QW layer is covered with a composite spacer above QW layer. The composite spacer includes an InP spacer first layer and an InAlAs spacer second layer above and on the InP spacer first layer. The semiconductive device includes InGaAs bottom and top barrier layers respectively below and above the QW layer. The semiconductive device also includes a high-k gate dielectric layer that sits on the InP spacer first layer in a gate recess. A process of forming the QW layer includes using an off-cut semiconductive substrate.