Abstract:
Systems and methods for processing sensor data and end of life detection are provided. In some embodiments, a method for determining the end of life of a continuous analyte sensor includes evaluating a plurality of risk factors using an end of life function to determine an end of life status of the sensor and providing an output related to the end of life status of the sensor. The plurality of risk factors may be selected from the list including the number of days the sensor has been in use, whether there has been a decrease in signal sensitivity, whether there is a predetermined noise pattern, whether there is a predetermined oxygen concentration pattern, and error between reference BG values and EGV sensor values.
Abstract:
Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
Abstract:
Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
Abstract:
Methods and apparatus, including computer program products, are provided for processing analyte data. In some example implementations, a method may include generating glucose sensor data indicative of a host's glucose concentration using a glucose sensor; calculating a glycemic variability index (GVI) value based on the glucose sensor data; and providing output to a user responsive to the calculated glycemic variability index value. The GVI may be a ratio of a length of a line representative of the sensor data and an ideal length of the line. Related systems, methods, and articles of manufacture are also disclosed.
Abstract:
The present embodiments harness a wide variety of capabilities of modern smartphones, and combine these capabilities with information from a continuous glucose monitor to provide diabetics and related people with more information than the continuous glucose monitor can provide by itself. The increased information provides the diabetic with an increased likelihood of good diabetes management for better health.
Abstract:
The present embodiments harness a wide variety of capabilities of modern smartphones, and combine these capabilities with information from a continuous glucose monitor to provide diabetics and related people with more information than the continuous glucose monitor can provide by itself. The increased information provides the diabetic with an increased likelihood of good diabetes management for better health.
Abstract:
Devices, systems, and methods for providing more accurate and reliable sensor data and for detecting sensor failures. Two or more electrodes can be used to generate data, and the data can be subsequently compared by a processing module. Alternatively, one sensor can be used, and the data processed by two parallel algorithms to provide redundancy. Sensor performance, including sensor failures, can be identified. The user or system can then respond appropriately to the information related to sensor performance or failure.