Abstract:
A method for detecting a discovery reference signal includes: acquiring, by a user equipment, configuration information of a discovery reference signal, where the configuration information includes time-frequency resource information and sequence information of the discovery reference signal; receiving, by the user equipment, a first discovery reference signal sent by a base station; and determining a candidate time-frequency resource location of the discovery reference signal according to the time-frequency resource information, determining a candidate sequence of the discovery reference signal according to the sequence information, and, by detecting the candidate sequence of the discovery reference signal at the candidate time-frequency resource location, determining an actual time-frequency resource location of the first discovery reference signal and/or determining an actual sequence of the first discovery reference signal.
Abstract:
A method and a device for transmitting an uplink control channel are provided. A user equipment (UE) receives downlink data which is scheduled by a downlink control channel from a network device, where the downlink control channel is a downlink control channel corresponding to a serving cell, the serving cell is a serving cell of at least two serving cells configured for the UE, the at least two serving cells include one primary serving cell and at least one secondary serving cell. The UE selects identity information according to the downlink control channel. The UE generates a physical uplink control channel corresponding to the downlink data by using the selected identity information, and transmits the physical uplink control channel on a channel resource of the physical uplink control channel.
Abstract:
Embodiments of the present invention provide an information transmission method, including: determining, by a user equipment (UE), a first subframe; configuring the UE to send a first uplink signal in the first subframe; determining, by the UE, that the first uplink signal is a first type of uplink signal, where the first type of uplink signal occupies a first part of symbols of the first subframe, and the number of symbols included in the first part of symbols is less than the number of symbols included in the first subframe; and detecting, by the UE, a downlink control channel on a second part of symbols in the first subframe, where the first part of symbols and the second part of symbols do not overlap in time domain.
Abstract:
Embodiments of the present invention provide a communication method for a carrier aggregation system. The communication method includes receiving physical downlink share channel PDSCH information sent by a base station through a subframe n of a secondary cell. If a subframe n of a primary cell is a downlink subframe, an ACK/NACK of the sent PDSCH information is fed back on a subframe m or a subframe p of the primary cell.
Abstract:
The present invention discloses a method and an apparatus for wireless communications, which relate to the field of communications and are used to solve the problem of a relatively low communication quality in the advanced full duplex communication technology. The method provided in the present invention includes: dividing available radio resources in a communication system into first radio resources and second radio resources, where the first radio resources and the second radio resources occupy different radio resources; simultaneously performing bidirectional transmission of communication information with a user equipment through the first radio resources; and performing unidirectional transmission of communication information with the user equipment through the second radio resources. The present invention is applicable to the field of communications and used for wireless communications.
Abstract:
A carrier configuration method is disclosed. According to various embodiments, the method includes configuring a new carrier type NCT subframe and/or a backward compatible subframe on a first carrier, determining subframe configuration information of the first carrier according to the configuration of the NCT subframe and/or the configuration of the backward compatible subframe on the first carrier and sending the subframe configuration information of the first carrier to first user equipment (UE) by using dynamic signaling, where the subframe configuration information of the first carrier is used by the first UE to determine a subframe type of a subframe on the first carrier according to the subframe configuration information of the first carrier. The method further includes using, according to the subframe type of the subframe on the first carrier, the first carrier to perform communication.
Abstract:
Embodiments of the present invention provide a communication method, a base station, and a user equipment. The communication method includes: sending a PDCCH to a user equipment in one subframe, where the PDCCH is used to schedule transmission of PDSCHs of at least two subframes of the user equipment, the PDCCH carries first indicator information, and the first indicator information indicates a channel resource for transmitting uplink ACK/NACK information that is corresponding to the PDSCHs; determining a transmission subframe carrying the uplink ACK/NACK information that is corresponding to the PDSCHs, and receiving the uplink ACK/NACK information on the channel resource in the transmission subframe. In the embodiments of the present invention, when a PDCCH schedules multiple PDSCHs, an ACK/NACK resource indicator field is used to indicate a channel resource of ACK/NACK feedback that is corresponding to the scheduled PDSCHs, thereby improving scheduling flexibility.
Abstract:
The present invention provides an information transmission method and apparatus. The information transmission method includes: obtaining, by a terminal, subframe configuration information of at least two serving cells, and transmitting, by the terminal according to HARQ timing relationships respectively corresponding to the at least two serving cells, information with a network side device in uplink subframes and/or downlink subframes indicated by the subframe configuration information; where the at least two serving cells include at least one first serving cell.
Abstract:
Embodiments of the present invention provide an information transmission method, including: determining, by a user equipment (UE), a first subframe; configuring the UE to send a first uplink signal in the first subframe; determining, by the UE, that the first uplink signal is a first type of uplink signal, where the first type of uplink signal occupies a first part of symbols of the first subframe, and the number of symbols included in the first part of symbols is less than the number of symbols included in the first subframe; and detecting, by the UE, a downlink control channel on a second part of symbols in the first subframe, where the first part of symbols and the second part of symbols do not overlap in time domain.
Abstract:
A method for sending an acknowledgement includes: sending first subframe ratio information and second subframe ratio information to a UE; reserving a first PHICH resource set in a first acknowledgement subframe set; reserving a second PHICH resource set in an acknowledgement subframe, in which the first PHICH resource set does not exist, of a second acknowledgement subframe set; receiving uplink data sent by the UE; determining an acknowledgement subframe for the uplink data; and sending an acknowledgement to the UE by using a PHICH resource in the first PHICH resource set if the first PHICH resource set exists in the acknowledgement subframe, or sending an acknowledgement to the UE by using a PHICH resource in the second PHICH resource set if the first PHICH resource set does not exist in the acknowledgement subframe. PHICH resource overhead of a system is lowered and data transmission for the user equipment is ensured.