Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Embodiments of the present disclosure provide a method for transmitting signals. The method includes: determining, by a communication node, that resources of a DRS and resources of other types of reference signals are overlapped; and selecting, by the communication node, at least one type of signal from the DRS and the other types of reference signals according to a predefined mode and transmitting the selected signal. Embodiments of the present disclosure may further disclose a corresponding method and device for receiving signals, a method and device for determining transmission power of the reference signals and a method for transmitting the DRS in a DL transmission burst including the data. With embodiments of the present disclosure, the confusion of the measurement of the DRS and the measurement of other types of reference signals may be solved.
Abstract:
The present disclosure provides a method for reporting channel state information (CSI). a first set of channel state information-reference signals (CSI-RSs) sent from a base station is measured to obtain a first set of CSI, and the first set of CSI obtained is reported to the base station. A second set of CSI-RSs sent from the base station is measured based on the first set of CSI to obtain a second set of CSI, and the second set of CSI obtained is reported to the base station, in which the second set of CSI-RSs is precoded CSI-RSs determined based on the first set of CSI.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides method and apparatus for receiving a common signaling. According to the various embodiments of the present disclosure, a method of a terminal for receiving a common signaling comprises determining a reception mode of a common signaling based on a maximum bandwidth supported by the terminal, and receiving, by the terminal, the common signaling based on the determined reception mode.
Abstract:
A method and an apparatus for transmitting uplink demodulation reference signals (DMRSs) is provided. The method includes a user equipment (UE) determines an uplink DMRS format for demodulating a physical uplink shared channel (PUSCH) according to frequency-domain resources occupied by the PUSCH, in which the uplink DMRS format includes a comb occupied by a PUSCH DMRS sequence. The comb is subcarriers having specified intervals occupied by demodulation reference signals, and the specified intervals between the occupied subcarriers are same. For the DMRSs using the comb format, subcarriers with specific intervals are used for channel estimation, and values of the channel estimation are used for data demodulation. The UE transmits uplink information and the demodulation reference signals on physical resources using the uplink DMRS format. The present disclosure can improve the multiplexing ratio of uplink physical resources in a multi-UE scenario.
Abstract:
A method, terminal, and base station for transmitting or receiving hybrid automatic repeat request acknowledgment (HARQ-ACK) information in a wireless communication system. The method includes receiving, from a base station (BS), first data on a first component carrier (CC) configured with frequency division duplex (FDD) and second data on a second CC configured with time division duplex (TDD), wherein one of the first and second CC is a primary CC (PCC) and another of the first and second CC is a secondary CC (SCC); determining HARQ-ACK timing for the first data based on a configuration of the PCC; determining HARQ-ACK timing for the second data based on the configuration of the PCC; transmitting, to the BS on the PCC, HARQ-ACK information for the first data using the determined HARQ-ACK timing for the first data and HARQ-ACK information for the second data using the determined HARQ-ACK timing for the second data.
Abstract:
The present invention discloses a method and an apparatus for reporting channel state information (CSI). In the method, a UE receives information of a CSI report, analyzes the information of the CSI report, determines a frequency band of the CSI report, a report type of the CSI report, a report mode of the CSI report, a CSI process of the CSI report, a combination of at least one in a CSI subframe set and/or cells, and a report way of the CSI report. According to the method, it is ensured that in a condition that a part of uplink subframes are occupied, transmission of the CSI report of the UE is not impacted.
Abstract:
A method for implementing uplink transmission in a flexible frequency division duplex (FDD) system is provided. A flexible FDD supported user equipment (FFUE) receives signaling from an evolved node B (eNB), obtains an uplink carrier configuration, and performs physical uplink shared channel (PUSCH) transmission by way of synchronous HARQ of 8 ms, synchronous HARQ of 10 ms, or asynchronous hybrid automatic repeat request (HARQ). According to the solution provided by the present invention, uplink transmission in the FDD system can be realized with low complexity, and the system performance of the FDD system is improved.
Abstract:
Various embodiments of the present disclosure describe a terminal and a base station. Various embodiments of the present disclosure describe how to transmit the SRS on an FDD downlink carrier and effectively configure and transmit the FDD downlink carrier SRS, so that the FDD system has the channel reciprocity and is more suitable for a large-scale multi-antenna system. Various embodiments of the present disclosure describe an SRS transmission method and device when an uplink carrier of the FDD system can transmit an uplink signal and a downlink signal.
Abstract:
The present invention provide a method for processing flexible duplex, including: receiving, by a UE, configuration information of flexible duplex; and according to the received configuration information of flexible duplex, transmitting and receiving data by the UE based on configured uplink and downlink subframe distribution on one or two carriers of a flexible duplex cell. The present disclosure further provides an apparatus for processing flexible duplex. The method and apparatus of the present disclosure support to configure uplink and downlink subframes at the same time on a pair of carriers or one of a pair of carriers of the flexible duplex cell, so as to meet requirements of uplink and downlink traffics.
Abstract:
Provided is a method for performing an uplink scheduling by an evolved Node B (eNB) in a wireless communication system that includes sending signaling information to User Equipment (UE) including synchronous Hybrid Automatic Repeat request (HARQ) timing information of Physical Uplink Shared Channel (PUSCH), with the synchronous HARQ timing information determined based on information of grouping of uplink and downlink configurations and receiving PUSCH information sent by the UE based on timing information. The transmission of PUSCH in a dynamic TDD system can be effectively regulated, and the UE can identify the group of current configurations by receiving signaling, determining synchronous HARQ timing relation of scheduled PUSCH to implement scheduling of PUSCH in a dynamic TDD system with minor modification of the system.