Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives, by a user equipment (UE) during a first subframe, an indication of a dynamic uplink/downlink (UL/DL) subframe configuration. The apparatus determines an uplink hybrid automatic repeat request (HARQ) timing based on an uplink reference subframe configuration and at least one of the dynamic UL/DL subframe configuration or a downlink reference subframe configuration. The apparatus selects an uplink subframe for communication based on the determined uplink HARQ timing.
Abstract:
Compounds and methods are provided for the treatment of, inter alia, Type II diabetes and other diseases associated with poor glycemic control. The compounds of the invention are orally active.
Abstract:
An electrical connector includes an insulative housing (3), a number of contacts (4) retained in the insulative housing (3) and a metallic shell (1) enclosing the insulative housing (3). The metallic shell (1) includes a number of peripheral walls and a soldering tab (15) extending therefrom. Each of the soldering tab (15) and the peripheral walls includes an intermediate layer (20), a first plating layer (21), a second plating layer (22) and a third plating layer (23). The third plating layer (23) covers both inner and outer sides of the second plating layer (22) of the peripheral walls for enhancing anti-wear properties while leaving the second plating layer (22) of the soldering tab (15) uncoated for wetting. Besides, a method of surface treatment of the metallic shell (1) is also disclosed.
Abstract:
A graphene-based composite structure is disclosed. The graphene-based composite structure includes a graphene layer, a transition metal layer, and a substrate. The graphene layer, transition metal layer, and substrate are stacked together in series to form a sandwich structure. The graphene layer and the transition metal layer are coupled by d-p orbitals hybridization. The transition metal layer and the substrate are also coupled by d-p orbitals hybridization. A method for making graphene-based composite structure is also disclosed.
Abstract:
Methods for fabricating a device structure such as a bipolar junction transistor, device structures for a bipolar junction transistor, and design structures for a bipolar junction transistor. The device structure includes a collector region formed in a substrate, an intrinsic base coextensive with the collector region, an emitter coupled with the intrinsic base, a first isolation region surrounding the collector region, and a second isolation region formed at least partially within the collector region. The first isolation region has a first sidewall and the second isolation region having a second sidewall peripherally inside the first sidewall. A portion of the collector region is disposed between the first sidewall of the first isolation region and the second sidewall of the second isolation region.
Abstract:
Various methods for providing a multi-dimensional data interface are provided. One example method may include receiving first data navigation instructions for navigating data in a first dimension or a second dimension via a first user interface device, causing a presentation of the data to be modified within the first dimension or the second dimension in response to at least receiving the first data navigation instructions, receiving second data navigation instructions for navigating the data in a third dimension via a second user interface device, and causing the presentation of the data to be modified within a third dimension in response to at least receiving the second data navigation instructions. Similar and related example methods, example apparatuses, and example computer program products are also provided.
Abstract:
A method of forming an electrode including an electrochemical catalyst layer is disclosed, which comprises forming a graphitized porous conductive fabric layer, optionally conditioning the graphitized porous conductive fabric layer, and dipping the graphitized porous conductive fabric layer into a solution containing a plurality of polymer-capped noble metal nanoclusters dispersed therein. The polymer-capped noble metal nanoclusters as an electrochemical catalyst layer are adsorbed onto the graphitized porous conductive fabric layer. An electrochemical device with the electrode made thereby is also contemplated.
Abstract:
An integrated circuit chip includes a semiconductor substrate having thereon a plurality of IMD layers and first conductive layers embedded in the IMD layers; a first insulating layer overlying the IMD layers and the first conductive layers; a plurality of first power/ground mesh wiring lines, in a second conductive layer overlying the first Insulating layer, for distributing power signal or ground signal; and a second insulating layer covering the second conductive layer and the first insulating layer.
Abstract:
A thermally driven heat pump includes a low temperature evaporator for evaporating cooling fluid to remove heat A first heat exchanger located at an outlet of a converging/diverging chamber of a first ejector receives a flow of primary fluid vapor and cooling fluid vapor ejected from the first ejector for condensing a portion of the cooling fluid vapor An absorber located in the first heat exchanger absorbs cooling fluid vapor into an absorbing fluid to reduce the pressure in the first heat exchanger A second heat exchanger located at an outlet of a converging/diverging chamber of a second ejector receives primary fluid vapor and cooling fluid vapor ejected from the second ejector for condensing the cooling fluid vapor and the primary fluid vapor A separator in communication with the second ejector, the low temperature evaporator and the primary fluid evaporator separates the primary fluid from the cooling fluid.