Abstract:
A display may have an active area in which pixels display images through a transparent display layer. An opaque masking material may be formed in an inactive border area adjacent to the active area. The opaque masking layer may include particles such as carbon black particles to provide the opaque masking layer with a dark appearance. The color of the opaque masking layer may be adjusted by incorporating additional particles such as titanium oxide particles. Particle size for the carbon black particles and the index of refraction of the opaque masking layer may be adjusted to reduce reflectance in the inactive border area. A transparent conductive layer may be supported by the transparent display layer. Index-of-refraction matching layers may be interposed between the transparent conductive layer and the transparent display layer. The opaque masking layer may be interposed between the matching layers in the inactive border area.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
This disclosure relates to image capture devices with the ability to perform adaptive white balance correction using a switchable white reference (SWR). In some embodiments, the image capture device utilizes “true white” information to record images that better represent users' perceptions. In other embodiments, the same SWR and camera that dynamically sample ambient lighting conditions are used to determine “true white” in near real-time. In other embodiments, the image capture device comprises a display screen that utilizes the “true white” information in near real-time to dynamically adjust the display. In other embodiments, face detection techniques and/or ambient light sensors may be used to determine which device camera is most closely-aligned with the direction that the user of the device is currently looking in, and using it to capture a “true white” image in the direction that most closely corresponds to the ambient lighting conditions that currently dominate the user's perception.
Abstract:
An organic light-emitting diode display may have an array of pixels. Each pixel may have an organic light-emitting diode and thin-film transistor circuitry that controls current flow through the organic light-emitting diode. The thin-film transistor circuitry may include silicon thin-film transistors and semiconducting-oxide thin-film transistors. Double gate transistor structures may be formed in the transistors of the thin-film transistor circuitry. A double gate transistor may have a semiconductor layer sandwiched between first and second dielectric layers. The first dielectric layer may be interposed between an upper gate and the semiconductor layer and the second dielectric layer may be interposed between a lower gate and the semiconductor layer. Capacitor structures may be formed from the layers of metal used in forming the upper and lower gates and other conductive structures.
Abstract:
A display may be provided with an active central region and a peripheral inactive region. The display may have one or more flexible edges in the peripheral inactive region. Conductive lines may pass between components in the active central region such as display pixels and touch sensor electrodes and components in the inactive peripheral region such as gate driver circuitry and patterned interconnect lines. Each conductive line may have an unbent segment on a portion of a display layer in the active central region and may have a segment on the bent edge of the display layer. The display layer may be formed from a polymer or other flexible material. The bent segments may be configured to be less susceptible to increases in resistance from bending than the unbent segments.
Abstract:
An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
Abstract:
Processes for manufacturing touch sensors with one or more guard traces to reduce the effect of moisture damage are provided. One example process can include forming one or more guard traces between an edge of the touch sensor and the metal traces that route the drive and sense lines to bond pads. The one or more guard traces can be uncoupled from the drive lines and sense lines to protect the inner metal traces from moisture damage. In some examples, ends of the one or more guard traces can be coupled to ground by copper. In other examples, ends of the one or more guard traces can be coupled to ground by indium tin oxide or the one or more guard traces can be coupled to ground by a strip of indium tin oxide. In yet other examples, the guard trace can be floating (e.g., not coupled to ground).
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer covers the array of pixels. Patterned metal on the pixel definition layer may assist the cathode layer in distributing a power supply voltage to the organic light-emitting diodes. The patterned metal may be overlapped by patterned black masking material on an encapsulation layer such as a color filter layer. The pixel definition layer may also be formed from metal that is coated with inorganic dielectric. The cathode may be shorted to a metal pixel definition layer through openings in the inorganic coating.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the spectral characteristics of display light emitted from the display to achieve a desired effect on the human circadian system. For example, the display control circuitry may adjust the spectral characteristics of blue light emitted from the display based on the time of day such that a user's exposure to the display light may result in a circadian response similar to that which would be experienced in natural light. The spectral characteristics of blue light emitted from the display may be adjusted by adjusting the relative maximum power levels provided to blue pixels in the display or by shifting the peak wavelength associated with blue light emitted from the display.