Abstract:
A jacketed light emitting diode assembly is provided, which includes a light emitting diode including a set of positive and negative contacts, and a lens body containing a semiconductor chip and end portions of the contacts. An electrical wire set of first and second electrical wires are connected to the positive contact and the negative contact, respectively. A light transmissive cover receives the lens body, and has an opening through which at least one of the contact set and the electrical wire set passes. An integrally molded plastic jacket at the opening of the light transmissive cover provides a seal at the opening against moisture and airborne contaminants. A waterproof light string including one or more of the jacketed light emitting diode assemblies is also provided, as are related methods.
Abstract:
Scan blocks with scan chains are used to partition and test semiconductor devices using scan groups. The partitioning of the semiconductor device enables testing of all elements within each scan block, at speed, to provide fault coverage. A challenge in scan testing is keeping the power dissipation during testing under the allowed power capabilities of the tester power supplies, as the power used during scan test is much higher than that used during functional testing. A method for estimating the power dissipation of scan blocks in a circuit during the design stage is disclosed. Using the results generated, the circuit designer divides the design into an optimum number of scan blocks for test. Thus at-speed scan of the individual or groups of scan blocks can be estimated, during design, for optimizing test time while keeping the test power within acceptable limits.
Abstract:
The present invention comprises a method and apparatus for installing a stator core into a power generator 1 that comprises assembling the stator core inside of a container 60, and then moving the container to the power generator. The container is horizontally aligned with the power generator, and the stator core is transferred from the container to the power generator.
Abstract:
A plug and/or a plug and cord connector set that includes integrated circuitry for use with decorative lighting products such as Christmas lights and rope lights. The integrated circuitry included in the plug and/or plug and cord connector combination can serve to reduce or limit current, provide full-wave AC to DC rectification, provide overload protection, reduce voltage, protect against voltage spikes, add blinking or flashing functions, or any combination thereof. An optional intermediate circuit is included for the manufacture of light strings employing multiple series connections.
Abstract:
A system and method of compensating for effects of on-chip processing variation on an integrated circuit. The integrated circuit is divided into a set of regions. Then, a region control logic, included in each region, predicts a processing variation in each respective region of the integrated circuit. Finally, each region control logic automatically selects one of a set of available power settings to power each one of the respective regions, in response to the region control logic predicting the processing variation, wherein the processing variation of each of the set of regions is minimized.
Abstract:
A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.
Abstract:
A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.
Abstract:
A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.
Abstract:
A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.
Abstract:
A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.