Abstract:
Nitrogen and optionally sulfur contamination can be removed from catalysts, such as spent and regenerated catalysts, by stripping them with a hydrogen-containing stream at high temperatures, such as between about 100 to about 600° C. Lower pressures such as a gauge pressure below about 10 MPa favors nitrogen removal, whereas relatively higher pressure, for instance from about 0.5 MPa to about 8 MPa encourages sulfur removal. The metal dispersion, increased after the hot hydrogen stripping of the spent catalyst.
Abstract:
Bicomponent fibers of syndiotactic polypropylene and ethylene-propylene random copolymer, can be prepared. The bicomponent fibers may exhibit self-crimp properties and high shrinkage characteristics.
Abstract:
A polyolefin resin, including a high crystalline polyolefin and a crystalline wax, may be used to prepare articles that are resistant to staining. In one embodiment, the resin is an admixture of high crystalline isotactic polypropylene and a polyethylene wax. The articles prepared therewith may be particularly resistant to food staining, including staining from contact with tomato products, and also resistant to scratching, odor adsorption, and distortion during heating.
Abstract:
It has been discovered that certain compounds serve as particle size regulators when employed together with peroxide initiators for the polymerization of vinylaromatic monomers in the presence of diene polymers. Suitable compounds that can control particle size include, but are not necessarily limited to, cobalt naphthenate, zinc naphthenate, iron octoate, calcium octoate, zinc octoate, zinc neodecanoate, potassium octoate, copper naphthenate, calcium versalate, and the like. Use of these metal carboxylates when vinylaromatic monomers are polymerized in the presence of polybutadienes and peroxide initiators results in reduced polybutadiene particles. Grafting and morphology characteristics may also be improved.
Abstract:
A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
Abstract:
A polymer blend and a method of making the same are provided. The polymer blend includes an ethylene-propylene (C2-C3) random copolymer and a modifier selected from the group consisting of a metallocene-catalyzed polyethylene-based copolymer, a metallocene-catalyzed polyethylene-based terpolymer, and a syndiotactic polypropylene homopolymer. The polymer blend may also include an organic peroxide for visbreaking the polymer blend. An end use article is made from the foregoing polymer blend. The end use article may be, for example, a film, an injection molded article, a compression molded article, a thermoformed article, and a fiber. The end use article is desirably a film having an Elmendorf tear strength of at least about 300 g/ply in the machine and transverse directions.
Abstract:
It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
Abstract:
A process for the regeneration of a deactivated zeolite beta catalyst such as rare earth promoted zeolite beta catalyst deactivated in the course of an aromatic alkylation reaction. A zeolite beta conversion catalyst deactivated with the deposition of coke is heated to a temperature in excess of 300° C. in an oxygen-free environment. An oxidative regeneration gas is supplied to the catalyst bed with oxidation of a portion of a relatively porous coke component to produce an exotherm moving through the catalyst bed. At least one of the temperature and oxygen content of the gas is progressively increased to oxidize a porous component of the coke. Regeneration gas is supplied having at least one of an increased oxygen content or increased temperature to oxidize a less porous refractory component of the coke. The regeneration process is completed by passing an inert gas through the catalyst bed at a reduced temperature.
Abstract:
Disclosed are novel non-linear vinyl polymers comprised of a multifunctional peroxide, and a cross-linking agent and/or a chain transfer agent, and methods of making such polymers having: at least 0.03 branches/1000 backbone carbons; linear portions with a molecular weight (Mw) of 350,000 or less; 0.2 to 3.0 branches/molecule; or, a Mz/Mw of from 1.7 to 5.7. Methods of quantifying branching are disclosed using a linear reference having 0.0 to 0.06 branches/1000 backbone carbons along with SEC techniques and measurements of molecular weight, molecular size, and concentration. Also discovered is a vinyl polymer resin comprised of from 0.1 to 50 weight percent of non-linear polymers having at least 0.06 branches/1000 backbone carbons, where branching is measured using a heat polymerized polystyrene having from 0.0 to 0.06 branches/1000 backbone carbons as a linear reference.
Abstract:
Disclosed is a method for preparing an injection molded article comprising bringing an injection molded substrate into contact with a polymer film during an injection molding process at a point in the injection molding process, the resulting part having improved surface properties such as low heat seal initiation temperature while retaining substantially all of the mechanical characteristics of the substrate. Random polypropylene copolymers are disclosed as being useful for preparing the polymer films.