Abstract:
A hydropneumatic pressure accumulator, includes a gas chamber, an oil chamber, and a pair of metal bellows separating the chambers. An end plate is displaced according to volume changes in the gas chamber and oil chamber. A valve releases and blocks the flow of hydraulic fluid out of and into the oil chamber and has a valve lifter that controls the valve. During the displacement of the end plate, corresponding to a volume expansion in the gas chamber exceeding a predetermined maximum value, the valve lifter can be displaced by the end plate into a position which blocks the valve. The valve lifter is connected in a fixed manner to the end plate of the metal bellows. The valve can be blocked in two opposing directions by the displacement of the valve lifter.
Abstract:
An end seal seals between an end portion and an operating member moving toward the end portion. The end seal has a seal member mounted on the end portion. A seal lip pressed by sealing fluid pressure to come in contact with the operating member when the operating member comes in contact with the end portion and stops is provided on the seal member.
Abstract:
The invention relates to a hydropneumatic accumulator comprising a bellow (19), which, inside the accumulator housing (1), separates a gas chamber (17) from an oil chamber (13) and which is fastened with one end thereof to the accumulator housing (1) so that the oil chamber (13) is delimited by the inside of the bellow (19). Said bellow is sealed on the other free end by means of a closing body (21) that moves according to changes in volume of the gas chamber (17) and of the oil chamber (13). The hydropneumatic accumulator also comprises a valve (31), which enables a hydraulic fluid to flow out of and into the oil chamber (13) or which blocks the flow of said hydraulic fluid. The valve can be transferred into its blocking position by the closing body (21) when the closing body (21) undergoes a movement corresponding to an increase in the volume of the gas chamber (17) that exceeds a predetermined maximum value. Said closing body is provided in the shape of a trough (21) which, with its edge (25) located on the open end (23), is connected to the assigned free end of the bellow (19). The trough (21) extends with its lateral wall (27) along the inside of the metal bellow (19), and the bottom (35) of the trough (21) is configured as a moveable valve element of the valve (31) that controls the flow of hydraulic fluid.
Abstract:
A diagnosing apparatus for diagnosing an accumulator operable to store under pressure a pressurized fluid delivered from a high-pressure source and to supply the pressurized fluid to a fluid-operated actuator for operating the fluid-operated actuator, the apparatus including a pressure detecting device for detecting a pressure of the pressurized fluid in the accumulator while the accumulator is placed in a fluid-tightly sealed state in which the accumulator is isolated from both the high-pressure source and the fluid-operated actuator, and a diagnosing device operable to diagnose the accumulator on the basis of the pressure of the pressurized fluid detected by the pressure detecting device in the fluid-tightly sealed state of the accumulator.
Abstract:
An accumulator including a housing with a gas chamber and a liquid chamber therein. A primary piston is moveable in the housing and connected to the housing by a primary bellows sealing the gas chamber with respect to the liquid chamber. A secondary piston is moveable with respect to the primary piston and connected to the primary piston by a secondary bellows sealing the secondary piston with respect to the primary piston.
Abstract:
Disclosed is an accumulator comprising a cylindrical shell including a cylindrical portion, a partitioning member for partitioning the interior of the shell into a hydraulic chamber and a gas chamber, and a port including a hydraulic fluid flow path for communicating the exterior of the shell and the hydraulic chamber. The variation of the pressure of a hydraulic fluid flowing into the hydraulic chamber is accommodated by expansion and compression of a gas in the gas chamber according to expansion and contraction of the partitioning member. The port is approximately airtightly inserted into the cylindrical portion of the shell, and is welded to an outer circumference of the cylindrical portion by means of welding.
Abstract:
Disclosed is an accumulator comprising: a pressure vessel; an elastic bellows in which a compressed gas is sealed, an end of the bellows being fixed to an interior of the pressure vessel; a flow path having an opening communicating with the interior and an exterior of the pressure vessel; a valve connected to a movable end of the bellows to operatively close the opening according to elastic motion of the bellows; and a hydraulic chamber partitioned from a gas chamber formed in an interior of the bellows containing the compressed gas. The valve comprises an upper surface which can cover the opening, and plural circular protrusions which surround the entire circumference of the opening and can closely contact the circumference of the opening.
Abstract:
The invention relates to an electronically controllable vehicle braking system for a motor vehicle with a cylinder/piston arrangement providing a brake fluid, which, by actuating a brake pedal, is caused to provide brake fluid acting on the brake of the motor vehicle, with the cylinder/piston arrangement being connectable with a pump arrangement and a pressure accumulator. The pressure accumulator has a housing which comprises a fluid connection for a fluid flowing into and out of the housing as well as a spring arrangement against whose force brake fluid flowing through the fluid connection is acting, with at least one part of the spring arrangement being formed by at least one part of the housing wall.
Abstract:
Accumulators/compensators for pressurized fluent material systems are provided, in which a continuous substantially non-permeable, flexible membrane (like a bellows) surrounds or is surrounded by a non-gaseous support medium, all within a surrounding housing. Various combinations of support media, which may include internal gas-filled cavities, are described and illustrated.
Abstract:
An adaptive hydropneumatic pulsation damper is especially suited for hydraulic systems subject to pulsation with a strongly variable operating pressure. Because of good damping action, the pulsation damper makes a hydraulically firm coupling possible between hydraulic system elements, e.g., a pressure source and a consumer.