Abstract:
An electronic device may be provided with light sensors. The electronic device may have an electronic device housing in which a display is mounted. The display may have a transparent layer such as a transparent display cover layer, a thin-film transistor layer, or a color filter layer. An opaque masking layer such as a layer of black ink may be used to cover an inner surface of the transparent layer in an inactive area of the display. Sensor window openings may be formed in the black ink layer. A layer of ink may be formed in each sensor window opening. Each layer of ink may have a diffuse reflectivity that is matched to that of the black ink. A diffuser layer such as a polymer coating layer with light-scattering particles may be coated on the inner surface of the layer of ink in a sensor window opening.
Abstract:
The present disclosure describes systems, methods, and devices for estimating spectral contributions in ambient light. The present disclosure also describes systems, methods, and devices for compensating for field of view errors resulting from the user, contextual structures (e.g., buildings, trees, fixtures, or geological formations), atmospheric effects (e.g., ozone coverage, smog, fog, haze, or clouds), device structures, and/or device orientation/tilt relative to a light source being measured (e.g., sun, indoor/outdoor light emitter, or an at least partially reflective surface). The present disclosure also describes systems, methods, and devices for estimating spectral contributions in light or color measurements and accounting for field of view errors to obtain a refined estimate.
Abstract:
The invention relates to a light sensing device for sensing ambient light intensity, comprising at least one ambient light sensor and an occlusion detector for detecting an object occluding the ambient light sensor. The invention is further related to a corresponding method for sensing ambient light intensity.
Abstract:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The system also calculates the UV index in real-time, and can crowd source the measured data in a network. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
Abstract:
A UV dosimetry system comprises a wearable unit and a mobile computing device. The wearable unit measures the UV irradiance intensity and wirelessly communicates with the mobile computing device. The UV dosimetry system supports multi-user control and can link one mobile computing device with multiple wearable units. The UV dosimetry system processes the measured UV irradiance intensity to calculate the UV index (UVI) and the sensor site specific UV dose. It can also calculate the total absorbed UV dose and vitamin D production by taking into account user specific factors. The UVI data measured by a plurality of UV meters such as the disclosed UV dosimetry system are crowd sourced to a remote server together with the location and time data of the measurement. The remote server excludes invalid UVI measurement and generates UVI maps showing time-varying distribution of UVI data at different locations.
Abstract:
Electronic devices may include light sensors. A light sensor may be an ambient light sensor that is mounted adjacent to an aperture in an opaque structure. An ambient light sensor may include active light sensor elements located adjacent to the aperture and inactive light sensor elements located adjacent to the opaque structure. Signal processing circuitry may be interposed between the light sensor elements and a summing circuit that sums light signals from the light sensor elements to form an ambient light signal. The signal processing circuitry may include a switch and an amplifier associated with each light sensor element. The switch associated with each element may be used to selectively activate or inactivate that element. The amplifier associated with each element may be used to amplify the light signal from that element by a gain factor that depends on the location of that element with respect to the aperture.
Abstract:
Electronic devices may include light sensors. The light sensors may include alignment features. The light sensors may be optically aligned with an aperture in an opaque structure. The opaque structure may be formed from an opaque material or a transparent material with an opaque coating. The light sensor may be mounted in a support structure that has been optically aligned with the aperture. The light sensor or the support structure may include extended portions that are transparent to ultraviolet light. Ultraviolet light may be transmitted through the extended portions to cure adhesive that attaches the light sensor or the support structure to the opaque structure. The light sensor may be optically aligned with the aperture by viewing the aperture through an opening in the support structure, by viewing the alignment features on the light sensor through the aperture or by gathering alignment data using the light sensor during alignment operations.
Abstract:
An integrated, more automated system for determining the linearity of measurements of fiber optic power meters reduces the time and expense needed for linearity calibration. The system uses the triplet superposition method of linearity calibration and aids in performing the necessary series of measurements. A linearity measurement system for an optical power meter comprises an apparatus to output an optical signal to the optical power meter, the apparatus configured to output the optical signal at a controllable plurality of optical powers, a controller for controlling an optical power output from the apparatus to the optical power meter, a display device for displaying a state of the apparatus based on information from the controller, and an input device for commanding the controller to control the optical power output from the apparatus to the optical power meter.
Abstract:
The monitoring of UV radiation has received increased attention recently due to the hazards of accelerated skin ageing and even cancer following excessive exposure. Personalized monitoring gives a more accurate reading than crude weather forecasts of the ‘UV index’. This invention answers both these needs in a personal UV monitor that is incorporated into an existing display. Minimal processing changes are made to an existing display in order to achieve this added functionality, which is therefore achieved at little additional cost.
Abstract:
A radiation sensor includes first and second pixels with a radiation absorption filter positioned over the first pixel and an interference filter positioned over both the first and second pixels. The combined spectral response of the absorption filter and the first pixel has a first pixel pass-band and a first pixel stop-band. The spectral response of the interference filter has an interference filter pass-band which is substantially within the first pixel pass-band for radiation incident on the interference filter at a first angle of incidence, and substantially within the first pixel stop-band for radiation incident on the interference filter at a second angle of incidence greater than the first angle of incidence.