Abstract:
A braid-reinforced composite hollow fiber membrane is disclosed. The braid-reinforced composite hollow fiber membrane comprising a reinforcing material of a tubular braid and a polymer resinous thin film coated on the surface of the tubular braid according to the present invention is characterized in that: the tubular braid comprises multifilaments made of monofilaments having a crimp rate of 2 to 40%, and the peeling strength of the tubular braid and a polymer resinous thin film coated on the surface thereof is 1 to 10 MPa. In the composite hollow fiber membrane, the crimp rate of the monofilaments constituting the tubular braid of the reinforcing material is 2 to 40%, thus the surface area of the tubular braid contacted with the polymer resinous thin film is increased. Thus, the peeling strength of the tubular braid and the polymer resinous thin film coated on the surface thereof is excellent.
Abstract:
A nonvolatile memory device includes a nonvolatile memory cell, a read circuit and a control bias generating circuit. The nonvolatile memory cell has a resistance level that changes depending on stored data. The read circuit reads the resistance level of the nonvolatile memory cell by receiving a control bias and supplying the nonvolatile memory cell a read bias based on the control bias. The control bias generating circuit receives an input bias, generates the control bias based on the input bias and supplies the control bias to the read circuit. A slope of the control bias to the input bias is less than 1.
Abstract:
There are provided a bias voltage generator, a semiconductor memory device having the bias voltage generator, and a method for generating the bias voltage. The bias voltage generator which generates the bias voltage to control a sensing current supplied to a memory cell for sensing data is characterized in that the bias voltage is output in response to an input voltage being applied, so that a slope of the bias voltage to the input voltage is different in at least two sections divided corresponding to a level of the input voltage.
Abstract:
A non volatile memory device and a memory system having the same are disclosed. The non volatile memory device may include a memory cell array having a plurality of non volatile memory cells, a DRAM interface for exchanging data, a command and an address with an external device, a controller for selecting one of the memory cells in response to the address and performing a control operation for one of outputting data of the selected memory cell to the external device in response to the command and storing data received from the external device, and a DRAM buffer memory. The DRAM buffer memory has dynamic memory cells, and each of the dynamic memory cells has one transistor with a floating body.
Abstract:
A phase change random access memory on aspect includes a memory cell array block including a plurality of phase change memory cells, a column decoder, a row decoder, a column selector, and a write driver. The memory further includes a write boosting unit having a plurality of internal charge pumps which boost a first voltage to generate a write driving voltage which drives the write driver, where the number of internal charge pumps that are activated during a write operation is varied according to a number of phase change memory cells which are selected during the write operation. The memory still further includes a column boosting unit which boosts the first voltage to generate a column driving voltage which drives the column decoder, and a row boosting unit which boosts the first voltage to generate a row driving voltage which drives the row decoder.
Abstract:
A semiconductor memory device comprises a memory cell array comprising memory cells of a first type. The memory cell array performs write and read operations in response to signals designed for the operation of a memory cell array comprising memory cells of a type other than the first type.
Abstract:
A method of operating a phase change random access memory (PRAM) device comprises performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A method of performing a program-suspend-read operation in a PRAM device comprises programming a write block comprising N unit program blocks in response to a program operation request, and suspending the program operation after programming M unit program blocks, where M is less than N, in response to a read operation request. The method further comprises executing the requested read operation, and then resuming the programming of the write data block and programming (N−M) remaining unit program blocks.
Abstract:
A phase change random access memory on aspect includes a memory cell array block including a plurality of phase change memory cells, a column decoder, a row decoder, a column selector, and a write driver. The memory further includes a write boosting unit having a plurality of internal charge pumps which boost a first voltage to generate a write driving voltage which drives the write driver, where the number of internal charge pumps that are activated during a write operation is varied according to a number of phase change memory cells which are selected during the write operation. The memory still further includes a column boosting unit which boosts the first voltage to generate a column driving voltage which drives the column decoder, and a row boosting unit which boosts the first voltage to generate a row driving voltage which drives the row decoder.
Abstract:
The invention relates to an acrylic impact modifier having a core-shell structure that provides an acrylic impact modifier composition comprising (a) a rubber core containing an alkyl acrylate polymer comprising at least two layers having different cross-linking densities, and (b) a shell containing an alkyl methacrylate polymer; to a process for the preparation of the acrylic impact modifier; and to a poly(vinyl chloride) composition comprising it. The acrylic impact modifier imparting excellent impact resistance was invented by employing multi-stage polymerization and at the same time by controlling the swelling index of rubber particles by changing the degree of cross-linking from stage to stage. And the poly(vinyl chloride) comprising the impact modifier of the present invention has good weatherability as well as excellent impact strength.