Abstract:
A power closure system (40) for a vehicle panel (22, 24) includes position initialization techniques that ensure accurate position initialization. According to this invention, any slack in a coupling (62) between the vehicle panel and a motor (42) for moving the vehicle panel is removed prior to obtaining an initialization position reading when the panel (22, 24) is in a closed position. The inventive arrangement also includes determining a desired torque at which to operate the motor (42) during a position initialization procedure.
Abstract:
A vehicle door lock system comprises a sliding vehicle door, having a door path of travel generally translational to a vehicle frame. A drive unit moves the vehicle door along a door path. A drive component communicates the movement from the drive unit to the vehicle door by moving along a drive component path of travel. A latch is selectively actuated to arrest movement of the drive component and the vehicle door by blocking the drive component path of travel.
Abstract:
A system and method for decoupling a barrier from a barrier movement apparatus for the manual operation of the barrier. Advantageously, the decoupling is performed in response to a wireless signal and may be done only when the barrier is determined to be in a safe position.
Abstract:
A sliding door apparatus has a sliding door movably supported on a horizontal door rail for opening and closing an entrance of a vehicle, i.e. railroad car. The sliding door is locked when a latch member engages a fixing member disposed on the sliding door. When an emergency handle is operated, the latch member is released from the fixing member, and the sliding door can be opened manually. A motion of the emergency handle is directly transmitted to the latch member to release the latch member from the fixing member. Therefore, it is possible to operate the sliding door reliably without a problem associated with the flexible wire.
Abstract:
A power liftgate drive assembly automatically moves the liftgate of a vehicle between its open and closed positions. The drive assembly is secured to the vehicle at a position near the top of the liftgate. The drive assembly includes a motor that drives a sector gear between two positions. A guide rod is secured to the sector gear to translate the rotational movement of the sector gear into the pivotal movement of the ligtgate. A slot extends through the sector gear that allows the liftgate to be moved manually. A latch locks the guide rod in position with respect to the sector gear for automated movement whereas the latch releases the guide rod to move in the slot for manual operation.
Abstract:
An improved four-bar hinge assembly for attaching a trunk deck lid to a vehicle body in which the control link of the four-bar linkage has its usual vehicle-mounted pivot pin replaced by the rotatably driven output drive shaft of a power drive mechanism that is rigidly and directly coupled to the control link to swing to the same and thereby power actuate the four-bar linkage in order to pivot the deck lid between open and closed positions. The hinge elements are located on the weather side of the vehicle body components and the drive shaft extends through the vehicle sheet metal into the weather sealed trunk compartment so that the electro-mechanical drive components are mounted within the weather sealed trunk.
Abstract:
The device (2), which is used to lock running gear (1) guided in a rail (5) and is or can be connected to the latter, has a body (21, 22) in which a locking pin (23) is displaceably mounted and, by means of a resilient element (24), is held resiliently in a first position, so that the locking pin (23) can be brought by the action of a force from the first position, in which it can engage in a locking element (36, 53) provided in the rail (5) or connected to the rail (5), into a second position, in which it is released from the engagement in the locking element (36, 53). The locking device (2), which is constructed simply and cost-effectively, therefore permits dividing elements (90), such as sliding doors, sliding counters or folding walls, which are guided by the running gear (1), to be closed off securely.
Abstract:
An automatic door operating device drives a door for a pivotal movement in accordance with a switch operation. The automatic door operating device includes a handle disposed on the door; and a controller. The controller allows the door to be manually operable for the pivotal movement when the handle is operated during a time the door is in a process of being driven for the pivotal movement.
Abstract:
A base plate has mutually opposed first and second side surfaces. A first group of parts are arranged on the first side surface, which includes an electric motor, a speed reduction unit and an electromagnetic clutch. The speed reduction unit has a gear member which is projected to the second side surface from the first side surface through an opening formed in the base plate and driven by the motor when the electromagnetic clutch assumes ON condition. A second group of parts are arranged on the second side surface, which includes an intermediate gear which is rotatably connected to the base plate and meshed with the gear member, an output gear which is rotatably connected to the base plate through a shaft secured to the output gear and meshed with the intermediate gear and an output arm which is connected to the output gear to rotate therewith. The output arm is connected to the lid through a link.
Abstract:
A power operating system for opening and closing a vehicle liftgate has a pair of drive units supported on the vehicle pillars at the sides of the liftgate opening. Each drive unit includes a vertically oriented channel and a rack bar that moves in the channel. A link is universally attached to the rack bar at one end and universally attached to the liftgate at the opposite end. The rack bar is raised and lowered by a power unit that has a motor driven pinion gear that meshes with the rack bar. Raising and lowering the rack bar opens and closes the liftgate via the link.