Abstract:
A method of making a read sensor which defines its stripe height before its trackwidth using photoresist layers formed without undercuts is disclosed. The photoresist layers are removed using chemical-mechanical polishing (CMP) lift-off techniques instead of using conventional solvents. In particular, a first photoresist layer is formed in a central region over a plurality of read sensor layers. End portions of the read sensor layers around the first photoresist layer are removed by ion milling to define the stripe height for the read sensor. Next, insulator layers are deposited where the end portions of the read sensor layers were removed. The first photoresist layer is then removed through mechanical interaction with a CMP pad. In subsequently defining the trackwidth for the read sensor, a second photoresist layer is formed in a central region over the remaining read sensor layers. End portions of the read sensor layers around the second photoresist layer are then removed by ion milling to define the trackwidth for the read sensor. Next, hard bias and lead layers are deposited where the end portions of the read sensor layers were removed. The second photoresist layer is then removed through mechanical interaction with the CMP pad. Preferably, protective layers (e.g. carbon) between the photoresist layers and the read sensor layers are formed prior to photoresist removal. Thus, problems including those inherent with use of photoresist structures having undercuts are eliminated.
Abstract:
A method of altering the topography of a trailing edge of a slider is disclosed, the slider having a substrate surface, at least one magnetic recording head imbedded in an alumina undercoat, and a vertical axis relative to the substrate surface. The steps include first applying an alumina overcoat to at least the trailing edge, followed by lapping at least the trailing edge of the slider. The slider (or sliders) is then placed on a pallet that rotates, exposing the trailing edge to an ion beam. The ion beam is generated using an etchant gas such as Argon, or a mixture of gases such as Argon and Hydrogen, or Argon and CHF3. The trailing edge (or trailing edges) are then exposed at least once to the ion beam at a predetermined milling angle and predetermined time, the milling angle being the angle made by the ion beam relative to the vertical axis. The milling angle is typically between 0° and 85°.
Abstract:
A limited angulation bone screw assembly adapted to couple a spinal rod with a vertebra including a bone screw, a bushing and a housing. The pedicle screw having a shaft and an upper head portion, the upper head portion comprising a spherical surface with flats disposed on opposite sides of the upper head portion. The bushing comprising a lower rounded surface for mating with the spherical surface and flats of the upper head portion to restrict the angular movement of the bone screw. The coupled bone screw and bushing are inserted into the housing in a first orientation and then rotated to a second orientation to secure the coupled bone screw and bushing to complete the housing.
Abstract:
A method is presented for fabricating a read head having a read head sensor and a hard bias/lead layer which includes depositing a strip of sensor material in a sensor material region, and depositing strips of fast-milling dielectric material in first and second fast-milling dielectric material regions adjacent to the sensor material region. A protective layer and a layer of masking material is deposited on the strip of sensor material and the strips of fast-milling dielectric material to provide masked areas and exposed areas. A shaping source, such as an ion milling source, is provided which shapes the exposed areas. Hard bias/lead material is then deposited on the regions of sensor material and fast-milling dielectric material to form first and second leads and a cap on each of these regions. The cap of hard bias/lead material and the masking material is then removed from each of these regions.
Abstract:
A charge-balanced, continuous-write mask and wafer process changes the magneto resistive photo-definition step to a two-mask step operation. Critical images are written on one mask layer at a very small electron beam spot size, and non-critical images are written on a second mask layer at a relatively larger electron beam spot size. Both mask layers are put onto the same glass substrate where the critical mask layer is located at the most accurate position on the substrate. The non-critical images may be placed in a peripheral field. In wafer processing, the critical field is aligned and exposed onto the wafer and then the non-critical field is aligned and exposed.
Abstract:
A method for milling a structure. A single- or multi-layer resist having no undercut is added to a surface of a structure to be milled, the surface to be milled defining a plane. A milling process, such as ion milling, is performed. The milling process includes milling the structure at high incidence and milling the structure at razing incidence. The milling process can be performed only once, or repeated multiple times. High incidence can be defined as about 65 to about 90 degrees from the plane of the surface being milled. Razing incidence can be defined as about 0 to about 30 degrees from the plane of the surface being milled.