摘要:
A method of performing an ion implantation is provided. A workpiece is installed in the ion implanter. A wafer is provided in a receiving space within an ion implanter. An ion beam is generated by an ion source of the ion implanter. The bombard of the ion beam is blocked and particles generated during or after conducting the step of generating the ion beam are collected by the workpiece.
摘要:
System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
摘要:
System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
摘要:
A flexible dry electrode and the manufacturing method thereof are provided. The electrode has an electroplated uneven surface and at least one hole and is made of porous material.
摘要:
A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-κ dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-κ dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric and the fully silicided layer.
摘要:
System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
摘要:
An ion beam blocking component suitable for blocking an ion beam generated by an ion source of an ion implanter is provided. The blocking component includes a front plate, a back plate, and a plurality of side plates. The front plate has at least one opening. The back plate is behind the front plate, and has a plurality of grooves formed on one surface thereof facing the front plate. The side plates are connected between the front plate and the back plate, and a receiving space is formed between these plates.
摘要:
A method for reducing particles during ion implantation is provided. The method involves the use of an improved Faraday flag including a beam plate having thereon a beam striking zone comprising a recessed trench pattern on which the ion beam scans to and fro. An ion beam selected from the mass analyzer is blocked by the Faraday flag in a closed position between the mass analyzer and the semiconductor wafer. A beam current of the ion beam impinging on the beam striking zone of the beam plate is measured. After the beam current measurement, the Faraday flag is removed such that the ion beam impinges on the semiconductor wafer.
摘要:
Disclosed herein are various embodiments of semiconductor devices and related methods of manufacturing a semiconductor device. In one embodiment, a method includes providing a semiconductor substrate and forming a metal silicide on the semiconductor substrate. In addition, the method includes treating an exposed surface of the metal silicide with a hydrogen/nitrogen-containing compound to form a treated layer on the exposed surface, where the composition of the treated layer hinders oxidation of the exposed surface. The method may then further include depositing a dielectric layer over the treated layer and the exposed surface of the metal silicide.
摘要:
A method comprises measuring an RF voltage and ion current at a wafer during a plasma-enhanced deposition process, determining a sputter rate in response to the RF voltage and ion current measurements, detecting an abnormal condition in response to one of the RF voltage and ion current measurements, and sputter rate, and taking a corrective action in response to detecting an abnormal condition.