摘要:
A method comprises measuring an RF voltage and ion current at a wafer during a plasma-enhanced deposition process, determining a sputter rate in response to the RF voltage and ion current measurements, detecting an abnormal condition in response to one of the RF voltage and ion current measurements, and sputter rate, and taking a corrective action in response to detecting an abnormal condition.
摘要:
A shallow trench isolation (STI) structure and method of forming the same with reduced stress to improve charge mobility the method including providing a semiconductor substrate comprising at least one patterned hardmask layer overlying the semiconductor substrate; dry etching a trench in the semiconductor substrate according to the at least one patterned hardmask layer; forming one or more liner layers to line the trench selected from the group consisting of silicon dioxide, silicon nitride, and silicon oxynitride; forming one or more layers of trench filling material comprising silicon dioxide to backfill the trench; carrying out at least one thermal annealing step to relax accumulated stress in the trench filling material; carrying out at least one of a CMP and dry etch process to remove excess trench filling material above the trench level; and, removing the at least one patterned hardmask layer.
摘要:
A method for forming a field effect transistor includes: forming a conductive region on an isolation layer formed on a substrate, and a cap dielectric layer on the conductive region; forming a sacrificial dielectric layer over the isolation layer and the cap dielectric layer, and on sidewalls of the conductive region; removing a portion of the sacrificial dielectric layer on the cap dielectric layer; removing the cap dielectric layer; removing remaining portions of the sacrificial dielectric layer; forming a gate on the conductive region; and forming source/drain (S/D) regions within the conductive region and adjacent to the gate. A field effect transistor includes a conductive region over an isolation layer formed on a substrate, the conductive region being substantially without undercut at the region within the isolation layer beneath the conductive region; a gate on the conductive region; and S/D regions within the conductive region and adjacent to the gate.
摘要:
In a method of manufacturing a semiconductor device, an initial structure is provided. The initial structure includes a substrate, a patterned silicon layer, and a covering layer. The substrate has a buried insulator layer formed thereon. The patterned silicon layer is formed on the buried insulator layer. The covering layer is formed on the patterned silicon layer. A first layer is formed on the initial structure. Part of the first layer is removed with an etching process, such that a sidewall portion of the patterned silicon layer is exposed and such that a remaining portion of the first layer remains at a corner where the patterned silicon layer interfaces with the buried insulator layer. An oxide liner is formed on the exposed sidewall portion. A recess may be formed in the buried insulator layer (prior to forming the first layer) and may extend partially beneath the patterned silicon layer.
摘要:
In a method of manufacturing a semiconductor device, an initial structure is provided. The initial structure includes a substrate, a patterned silicon layer, and a covering layer. The substrate has a buried insulator layer formed thereon. The patterned silicon layer is formed on the buried insulator layer. The covering layer is formed on the patterned silicon layer. A first layer is formed on the initial structure. Part of the first layer is removed with an etching process, such that a sidewall portion of the patterned silicon layer is exposed and such that a remaining portion of the first layer remains at a corner where the patterned silicon layer interfaces with the buried insulator layer. An oxide liner is formed on the exposed sidewall portion. A recess may be formed in the buried insulator layer (prior to forming the first layer) and may extend partially beneath the patterned silicon layer.
摘要:
The present disclosure discloses an exemplary method for fabricating a semiconductor device comprises selectively growing a material on a top surface of a substrate; selectively growing a protection layer on the material; and removing a portion of the protection layer in an etching gas.
摘要:
A fin-FET device and a method for fabrication thereof both employ a bulk semiconductor substrate. A fin and an adjoining trough are formed within the bulk semiconductor substrate. The trough is partially backfilled with a deposited dielectric layer to form an exposed fin region and an unexposed fin region. A gate dielectric layer is formed upon the exposed fin region and a gate electrode is formed upon the gate dielectric layer. By employing a bulk semiconductor substrate the fin-FET device is fabricated cost effectively.
摘要:
In a method of manufacturing a semiconductor device, an initial structure is provided. The initial structure includes a substrate, a patterned silicon layer, and a covering layer. The substrate has a buried insulator layer formed thereon. The patterned silicon layer is formed on the buried insulator layer. The covering layer is formed on the patterned silicon layer. A first layer is formed on the initial structure. Part of the first layer is removed with an etching process, such that a sidewall portion of the patterned silicon layer is exposed and such that a remaining portion of the first layer remains at a corner where the patterned silicon layer interfaces with the buried insulator layer. An oxide liner is formed on the exposed sidewall portion. A recess may be formed in the buried insulator layer (prior to forming the first layer) and may extend partially beneath the patterned silicon layer.
摘要:
A method for forming a field effect transistor includes: forming a conductive region on an isolation layer formed on a substrate, and a cap dielectric layer on the conductive region; forming a sacrificial dielectric layer over the isolation layer and the cap dielectric layer, and on sidewalls of the conductive region; removing a portion of the sacrificial dielectric layer on the cap dielectric layer; removing the cap dielectric layer; removing remaining portions of the sacrificial dielectric layer; forming a gate on the conductive region; and forming source/drain (S/D) regions within the conductive region and adjacent to the gate. A field effect transistor includes a conductive region over an isolation layer formed on a substrate, the conductive region being substantially without undercut at the region within the isolation layer beneath the conductive region; a gate on the conductive region; and S/D regions within the conductive region and adjacent to the gate.
摘要:
A semiconductor device manufacturing system including a processing subsystem and a compensation thermal subsystem. The processing subsystem includes a process chamber and a thermal control subsystem having a processing subsystem heating element and configured to generate a process chamber temperature profile. The compensation thermal subsystem includes a temperature sensor configured to detect the process chamber temperature profile, a compensation thermal control unit (CTCU) configured to determine variation between the process chamber temperature profile and a desired temperature profile, and a compensation heating element configured to alter the process chamber temperature profile in response to the variation detected by the CTCU.